ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomization-based Machine Learning in Renewable Energy Prediction Problems: Critical Literature Review, New Results and Perspectives

125   0   0.0 ( 0 )
 نشر من قبل Javier Del Ser Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Randomization-based Machine Learning methods for prediction are currently a hot topic in Artificial Intelligence, due to their excellent performance in many prediction problems, with a bounded computation time. The application of randomization-based approaches to renewable energy prediction problems has been massive in the last few years, including many different types of randomization-based approaches, their hybridization with other techniques and also the description of n



قيم البحث

اقرأ أيضاً

In this tutorial article, we aim to provide the reader with the conceptual tools needed to get started on research on offline reinforcement learning algorithms: reinforcement learning algorithms that utilize previously collected data, without additio nal online data collection. Offline reinforcement learning algorithms hold tremendous promise for making it possible to turn large datasets into powerful decision making engines. Effective offline reinforcement learning methods would be able to extract policies with the maximum possible utility out of the available data, thereby allowing automation of a wide range of decision-making domains, from healthcare and education to robotics. However, the limitations of current algorithms make this difficult. We will aim to provide the reader with an understanding of these challenges, particularly in the context of modern deep reinforcement learning methods, and describe some potential solutions that have been explored in recent work to mitigate these challenges, along with recent applications, and a discussion of perspectives on open problems in the field.
To predict a critical transition due to parameter drift without relying on model is an outstanding problem in nonlinear dynamics and applied fields. A closely related problem is to predict whether the system is already in or if the system will be in a transient state preceding its collapse. We develop a model free, machine learning based solution to both problems by exploiting reservoir computing to incorporate a parameter input channel. We demonstrate that, when the machine is trained in the normal functioning regime with a chaotic attractor (i.e., before the critical transition), the transition point can be predicted accurately. Remarkably, for a parameter drift through the critical point, the machine with the input parameter channel is able to predict not only that the system will be in a transient state, but also the average transient time before the final collapse.
Machine translation (MT) plays an important role in benefiting linguists, sociologists, computer scientists, etc. by processing natural language to translate it into some other natural language. And this demand has grown exponentially over past coupl e of years, considering the enormous exchange of information between different regions with different regional languages. Machine Translation poses numerous challenges, some of which are: a) Not all words in one language has equivalent word in another language b) Two given languages may have completely different structures c) Words can have more than one meaning. Owing to these challenges, along with many others, MT has been active area of research for more than five decades. Numerous methods have been proposed in the past which either aim at improving the quality of the translations generated by them, or study the robustness of these systems by measuring their performance on many different languages. In this literature review, we discuss statistical approaches (in particular word-based and phrase-based) and neural approaches which have gained widespread prominence owing to their state-of-the-art results across multiple major languages.
We introduce a novel design for in-situ training of machine learning algorithms built into smart sensors, and illustrate distributed training scenarios using radio frequency (RF) spectrum sensors. Current RF sensors at the Edge lack the computational resources to support practical, in-situ training for intelligent signal classification. We propose a solution using Deepdelay Loop Reservoir Computing (DLR), a processing architecture that supports machine learning algorithms on resource-constrained edge-devices by leveraging delayloop reservoir computing in combination with innovative hardware. DLR delivers reductions in form factor, hardware complexity and latency, compared to the State-ofthe- Art (SoA) neural nets. We demonstrate DLR for two applications: RF Specific Emitter Identification (SEI) and wireless protocol recognition. DLR enables mobile edge platforms to authenticate and then track emitters with fast SEI retraining. Once delay loops separate the data classes, traditionally complex, power-hungry classification models are no longer needed for the learning process. Yet, even with simple classifiers such as Ridge Regression (RR), the complexity grows at least quadratically with the input size. DLR with a RR classifier exceeds the SoA accuracy, while further reducing power consumption by leveraging the architecture of parallel (split) loops. To authenticate mobile devices across large regions, DLR can be trained in a distributed fashion with very little additional processing and a small communication cost, all while maintaining accuracy. We illustrate how to merge locally trained DLR classifiers in use cases of interest.
Machine and Statistical learning techniques become more and more important for the analysis of psychological data. Four core concepts of machine learning are the bias variance trade-off, cross-validation, regularization, and basis expansion. We prese nt some early psychometric papers, from almost a century ago, that dealt with cross-validation and regularization. From this review it is safe to conclude that the origins of these lie partly in the field of psychometrics. From our historical review, two new ideas arose which we investigated further: The first is about the relationship between reliability and predictive validity; the second is whether optimal regression weights should be estimated by regularizing their values towards equality or shrinking their values towards zero. In a simulation study we show that the reliability of a test score does not influence the predictive validity as much as is usually written in psychometric textbooks. Using an empirical example we show that regularization towards equal regression coefficients is beneficial in terms of prediction error.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا