ﻻ يوجد ملخص باللغة العربية
General AI system solves a wide range of tasks with high performance in an automated fashion. The best general AI algorithm designed by one individual is different from that devised by another. The best performance records achieved by different users are also different. An inevitable component of general AI is tacit knowledge that depends upon user-specific comprehension of task information and individual model design preferences that are related to user technical experiences. Tacit knowledge affects model performance but cannot be automatically optimized in general AI algorithms. In this paper, we propose User-Oriented Smart General AI System under Causal Inference, abbreviated as UOGASuCI, where UOGAS represents User-Oriented General AI System and uCI means under the framework of causal inference. User characteristics that have a significant influence upon tacit knowledge can be extracted from observed model training experiences of many users in external memory modules. Under the framework of causal inference, we manage to identify the optimal value of user characteristics that are connected with the best model performance designed by users. We make suggestions to users about how different user characteristics can improve the best model performance achieved by users. By recommending updating user characteristics associated with individualized tacit knowledge comprehension and technical preferences, UOGAS helps users design models with better performance.
Classical causal and statistical inference methods typically assume the observed data consists of independent realizations. However, in many applications this assumption is inappropriate due to a network of dependences between units in the data. Meth
Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independ
Data scarcity is a tremendous challenge in causal effect estimation. In this paper, we propose to exploit additional data sources to facilitate estimating causal effects in the target population. Specifically, we leverage additional source datasets w
Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence clas
Deep reinforcement learning (DRL) has demonstrated impressive performance in various gaming simulators and real-world applications. In practice, however, a DRL agent may receive faulty observation by abrupt interferences such as black-out, frozen-scr