ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Unified Approach to Single Image Deraining and Dehazing

142   0   0.0 ( 0 )
 نشر من قبل Xiaohong Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new physical model for the rain effect and show that the well-known atmosphere scattering model (ASM) for the haze effect naturally emerges as its homogeneous continuous limit. Via depth-aware fusion of multi-layer rain streaks according to the camera imaging mechanism, the new model can better capture the sophisticated non-deterministic degradation patterns commonly seen in real rainy images. We also propose a Densely Scale-Connected Attentive Network (DSCAN) that is suitable for both deraining and dehazing tasks. Our design alleviates the bottleneck issue existent in conventional multi-scale networks and enables more effective information exchange and aggregation. Extensive experimental results demonstrate that the proposed DSCAN is able to deliver superior derained/dehazed results on both synthetic and real images as compared to the state-of-the-art. Moreover, it is shown that for our DSCAN, the synthetic dataset built using the new physical model yields better generalization performance on real images in comparison with the existing datasets based on over-simplified models.

قيم البحث

اقرأ أيضاً

Image dehazing aims to recover the uncorrupted content from a hazy image. Instead of leveraging traditional low-level or handcrafted image priors as the restoration constraints, e.g., dark channels and increased contrast, we propose an end-to-end gat ed context aggregation network to directly restore the final haze-free image. In this network, we adopt the latest smoothed dilation technique to help remove the gridding artifacts caused by the widely-used dilated convolution with negligible extra parameters, and leverage a gated sub-network to fuse the features from different levels. Extensive experiments demonstrate that our method can surpass previous state-of-the-art methods by a large margin both quantitatively and qualitatively. In addition, to demonstrate the generality of the proposed method, we further apply it to the image deraining task, which also achieves the state-of-the-art performance. Code has been made available at https://github.com/cddlyf/GCANet.
Haze degrades content and obscures information of images, which can negatively impact vision-based decision-making in real-time systems. In this paper, we propose an efficient fully convolutional neural network (CNN) image dehazing method designed to run on edge graphical processing units (GPUs). We utilize three variants of our architecture to explore the dependency of dehazed image quality on parameter count and model design. The first two variants presented, a small and big version, make use of a single efficient encoder-decoder convolutional feature extractor. The final variant utilizes a pair of encoder-decoders for atmospheric light and transmission map estimation. Each variant ends with an image refinement pyramid pooling network to form the final dehazed image. For the big variant of the single-encoder network, we demonstrate state-of-the-art performance on the NYU Depth dataset. For the small variant, we maintain competitive performance on the super-resolution O/I-HAZE datasets without the need for image cropping. Finally, we examine some challenges presented by the Dense-Haze dataset when leveraging CNN architectures for dehazing of dense haze imagery and examine the impact of loss function selection on image quality. Benchmarks are included to show the feasibility of introducing this approach into real-time systems.
Single image dehazing is a challenging ill-posed problem due to the severe information degeneration. However, existing deep learning based dehazing methods only adopt clear images as positive samples to guide the training of dehazing network while ne gative information is unexploited. Moreover, most of them focus on strengthening the dehazing network with an increase of depth and width, leading to a significant requirement of computation and memory. In this paper, we propose a novel contrastive regularization (CR) built upon contrastive learning to exploit both the information of hazy images and clear images as negative and positive samples, respectively. CR ensures that the restored image is pulled to closer to the clear image and pushed to far away from the hazy image in the representation space. Furthermore, considering trade-off between performance and memory storage, we develop a compact dehazing network based on autoencoder-like (AE) framework. It involves an adaptive mixup operation and a dynamic feature enhancement module, which can benefit from preserving information flow adaptively and expanding the receptive field to improve the networks transformation capability, respectively. We term our dehazing network with autoencoder and contrastive regularization as AECR-Net. The extensive experiments on synthetic and real-world datasets demonstrate that our AECR-Net surpass the state-of-the-art approaches. The code is released in https://github.com/GlassyWu/AECR-Net.
The formulation of the hazy image is mainly dominated by the reflected lights and ambient airlight. Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility. However, we note that the guidance of the depth information for transmission estimation could remedy the decreased visibility as distances increase. In turn, the good transmission estimation could facilitate the depth estimation for hazy images. In this paper, a deep end-to-end model that iteratively estimates image depths and transmission maps is proposed to perform an effective depth prediction for hazy images and improve the dehazing performance with the guidance of depth information. The image depth and transmission map are progressively refined to better restore the dehazed image. Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas. Extensive results on the benchmarks demonstrate that our proposed network performs favorably against the state-of-the-art dehazing methods in terms of depth estimation and haze removal.
208 - Xueyang Fu , Qi Qi , Yue Huang 2018
We propose a simple yet effective deep tree-structured fusion model based on feature aggregation for the deraining problem. We argue that by effectively aggregating features, a relatively simple network can still handle tough image deraining problems well. First, to capture the spatial structure of rain we use dilated convolutions as our basic network block. We then design a tree-structured fusion architecture which is deployed within each block (spatial information) and across all blocks (content information). Our method is based on the assumption that adjacent features contain redundant information. This redundancy obstructs generation of new representations and can be reduced by hierarchically fusing adjacent features. Thus, the proposed model is more compact and can effectively use spatial and content information. Experiments on synthetic and real-world datasets show that our network achieves better deraining results with fewer parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا