ترغب بنشر مسار تعليمي؟ اضغط هنا

Gated Context Aggregation Network for Image Dehazing and Deraining

362   0   0.0 ( 0 )
 نشر من قبل Dongdong Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image dehazing aims to recover the uncorrupted content from a hazy image. Instead of leveraging traditional low-level or handcrafted image priors as the restoration constraints, e.g., dark channels and increased contrast, we propose an end-to-end gated context aggregation network to directly restore the final haze-free image. In this network, we adopt the latest smoothed dilation technique to help remove the gridding artifacts caused by the widely-used dilated convolution with negligible extra parameters, and leverage a gated sub-network to fuse the features from different levels. Extensive experiments demonstrate that our method can surpass previous state-of-the-art methods by a large margin both quantitatively and qualitatively. In addition, to demonstrate the generality of the proposed method, we further apply it to the image deraining task, which also achieves the state-of-the-art performance. Code has been made available at https://github.com/cddlyf/GCANet.



قيم البحث

اقرأ أيضاً

We develop a new physical model for the rain effect and show that the well-known atmosphere scattering model (ASM) for the haze effect naturally emerges as its homogeneous continuous limit. Via depth-aware fusion of multi-layer rain streaks according to the camera imaging mechanism, the new model can better capture the sophisticated non-deterministic degradation patterns commonly seen in real rainy images. We also propose a Densely Scale-Connected Attentive Network (DSCAN) that is suitable for both deraining and dehazing tasks. Our design alleviates the bottleneck issue existent in conventional multi-scale networks and enables more effective information exchange and aggregation. Extensive experimental results demonstrate that the proposed DSCAN is able to deliver superior derained/dehazed results on both synthetic and real images as compared to the state-of-the-art. Moreover, it is shown that for our DSCAN, the synthetic dataset built using the new physical model yields better generalization performance on real images in comparison with the existing datasets based on over-simplified models.
93 - Cong Wang , Yutong Wu , Zhixun Su 2020
In the field of multimedia, single image deraining is a basic pre-processing work, which can greatly improve the visual effect of subsequent high-level tasks in rainy conditions. In this paper, we propose an effective algorithm, called JDNet, to solv e the single image deraining problem and conduct the segmentation and detection task for applications. Specifically, considering the important information on multi-scale features, we propose a Scale-Aggregation module to learn the features with different scales. Simultaneously, Self-Attention module is introduced to match or outperform their convolutional counterparts, which allows the feature aggregation to adapt to each channel. Furthermore, to improve the basic convolutional feature transformation process of Convolutional Neural Networks (CNNs), Self-Calibrated convolution is applied to build long-range spatial and inter-channel dependencies around each spatial location that explicitly expand fields-of-view of each convolutional layer through internal communications and hence enriches the output features. By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results both on real-world and synthetic datasets. Extensive experiments are conducted to demonstrate the superiority of our method compared with state-of-the-art methods. The source code will be available at url{https://supercong94.wixsite.com/supercong94}.
Convolutional neural networks (CNNs) are ubiquitous in computer vision, with a myriad of effective and efficient variations. Recently, Transformers -- originally introduced in natural language processing -- have been increasingly adopted in computer vision. While early adopters continue to employ CNN backbones, the latest networks are end-to-end CNN-free Transformer solutions. A recent surprising finding shows that a simple MLP based solution without any traditional convolutional or Transformer components can produce effective visual representations. While CNNs, Transformers and MLP-Mixers may be considered as completely disparate architectures, we provide a unified view showing that they are in fact special cases of a more general method to aggregate spatial context in a neural network stack. We present the model (CONText AggregatIon NEtwoRk), a general-purpose building block for multi-head context aggregation that can exploit long-range interactions emph{a la} Transformers while still exploiting the inductive bias of the local convolution operation leading to faster convergence speeds, often seen in CNNs. In contrast to Transformer-based methods that do not scale well to downstream tasks that rely on larger input image resolutions, our efficient network, named modellight, can be employed in object detection and instance segmentation networks such as DETR, RetinaNet and Mask-RCNN to obtain an impressive detection mAP of 38.9, 43.8, 45.1 and mask mAP of 41.3, providing large improvements of 6.6, 7.3, 6.9 and 6.6 pts respectively, compared to a ResNet-50 backbone with a comparable compute and parameter size. Our method also achieves promising results on self-supervised learning compared to DeiT on the DINO framework.
Single image rain streaks removal is extremely important since rainy images adversely affect many computer vision systems. Deep learning based methods have found great success in image deraining tasks. In this paper, we propose a novel residual-guide feature fusion network, called ResGuideNet, for single image deraining that progressively predicts highquality reconstruction. Specifically, we propose a cascaded network and adopt residuals generated from shallower blocks to guide deeper blocks. By using this strategy, we can obtain a coarse to fine estimation of negative residual as the blocks go deeper. The outputs of different blocks are merged into the final reconstruction. We adopt recursive convolution to build each block and apply supervision to all intermediate results, which enable our model to achieve promising performance on synthetic and real-world data while using fewer parameters than previous required. ResGuideNet is detachable to meet different rainy conditions. For images with light rain streaks and limited computational resource at test time, we can obtain a decent performance even with several building blocks. Experiments validate that ResGuideNet can benefit other low- and high-level vision tasks.
We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better diversity and more pertinent features as compared to those derived inputs produced by hand-selected pre-processing methods. The backbone module implements a novel attention-based multi-scale estimation on a grid network, which can effectively alleviate the bottleneck issue often encountered in the conventional multi-scale approach. The post-processing module helps to reduce the artifacts in the final output. Experimental results indicate that the GridDehazeNet outperforms the state-of-the-arts on both synthetic and real-world images. The proposed hazing method does not rely on the atmosphere scattering model, and we provide an explanation as to why it is not necessarily beneficial to take advantage of the dimension reduction offered by the atmosphere scattering model for image dehazing, even if only the dehazing results on synthetic images are concerned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا