ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse-designed multi-dimensional silicon photonic transmitters

328   0   0.0 ( 0 )
 نشر من قبل Ki Youl Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern microelectronic processors have migrated towards parallel computing architectures with many-core processors. However, such expansion comes with diminishing returns exacted by the high cost of data movement between individual processors. The use of optical interconnects has burgeoned as a promising technology that can address the limits of this data transfer. While recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, this approach will eventually saturate the usable bandwidth, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated intra- and inter-chip multi-dimensional communication scheme enabled by photonic inverse design. Using broad-band inverse-designed mode-division multiplexers, we combine wavelength- and mode- multiplexing of data at a rate exceeding terabit-per-second. Crucially, as we take advantage of an orthogonal optical basis, our approach is inherently scalable to a multiplicative enhancement over the current state of the art.

قيم البحث

اقرأ أيضاً

Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers in long-haul and intra-data-center links and enabling new applications such as solid-state LiDAR (Light Detection and Ranging) and optica l machine learning. Further improving the density and performance of silicon photonics, however, has been challenging, due to the large size and limited performance of traditional semi-analytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has until now faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices - a spatial mode multiplexer, wavelength demultiplexer, 50-50 directional coupler, and 3-way power splitter - made successfully in a commercial silicon photonics foundry. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond qua ntum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi- purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore the cost per chip can be dramatically reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for programmable circuits, erasable directional couplers (DCs) were designed and fabricated, utilising ion implanted waveguides. We demonstrate permanent switching between the drop port and through port of the DCs using a localised post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1X4 and 2X2 programmable switching circuits were then fabricated and subsequently programmed, to define their function.
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
119 - R. Maiti , C. Patil , T. Xie 2019
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientif ic and technologically-relevant properties leading to strong light-matter-interaction devices due to effects such as reduced coulomb screening or excitonic states. However, no efficient photodetector in the telecommunication C-band using 2D materials has been realized yet. Here, we demonstrate a MoTe2-based photodetector featuring strong photoresponse (responsivity = 0.5 A/W) operating at 1550nm on silicon photonic waveguide enabled by engineering the strain (4%) inside the photo-absorbing transition-metal-dichalcogenide film. We show that an induced tensile strain of ~4% reduces the bandgap of MoTe2 by about 0.2 eV by microscopically measuring the work-function across the device. Unlike Graphene-based photodetectors relying on a gapless band structure, this semiconductor-2D material detector shows a ~100X improved dark current enabling an efficient noise-equivalent power of just 90 pW/Hz^0.5. Such strain-engineered integrated photodetector provides new opportunities for integrated optoelectronic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا