ترغب بنشر مسار تعليمي؟ اضغط هنا

Entrywise Eigenvector Analysis of Random Matrices with Low Expected Rank

69   0   0.0 ( 0 )
 نشر من قبل Yiqiao Zhong
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recovering low-rank structures via eigenvector perturbation analysis is a common problem in statistical machine learning, such as in factor analysis, community detection, ranking, matrix completion, among others. While a large variety of bounds are available for average errors between empirical and population statistics of eigenvectors, few results are tight for entrywise analyses, which are critical for a number of problems such as community detection. This paper investigates entrywise behaviors of eigenvectors for a large class of random matrices whose expectations are low-rank, which helps settle the conjecture in Abbe et al. (2014b) that the spectral algorithm achieves exact recovery in the stochastic block model without any trimming or cleaning steps. The key is a first-order approximation of eigenvectors under the $ell_infty$ norm: $$u_k approx frac{A u_k^*}{lambda_k^*},$$ where ${u_k}$ and ${u_k^*}$ are eigenvectors of a random matrix $A$ and its expectation $mathbb{E} A$, respectively. The fact that the approximation is both tight and linear in $A$ facilitates sharp comparisons between $u_k$ and $u_k^*$. In particular, it allows for comparing the signs of $u_k$ and $u_k^*$ even if $| u_k - u_k^*|_{infty}$ is large. The results are further extended to perturbations of eigenspaces, yielding new $ell_infty$-type bounds for synchronization ($mathbb{Z}_2$-spiked Wigner model) and noisy matrix completion.



قيم البحث

اقرأ أيضاً

We propose an estimator for the singular vectors of high-dimensional low-rank matrices corrupted by additive subgaussian noise, where the noise matrix is allowed to have dependence within rows and heteroskedasticity between them. We prove finite-samp le $ell_{2,infty}$ bounds and a Berry-Esseen theorem for the individual entries of the estimator, and we apply these results to high-dimensional mixture models. Our Berry-Esseen theorem clearly shows the geometric relationship between the signal matrix, the covariance structure of the noise, and the distribution of the errors in the singular vector estimation task. These results are illustrated in numerical simulations. Unlike previous results of this type, which rely on assumptions of gaussianity or independence between the entries of the additive noise, handling the dependence between entries in the proofs of these results requires careful leave-one-out analysis and conditioning arguments. Our results depend only on the signal-to-noise ratio, the sample size, and the spectral properties of the signal matrix.
Consider a standard white Wishart matrix with parameters $n$ and $p$. Motivated by applications in high-dimensional statistics and signal processing, we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the $m times m$ pr incipal minors, under the asymptotic regime that $n,p,m$ go to infinity. Asymptotic results concerning extreme eigenvalues of principal minors of real Wigner matrices are also obtained. In addition, we discuss an application of the theoretical results to the construction of compressed sensing matrices, which provides insights to compressed sensing in signal processing and high dimensional linear regression in statistics.
Consider the problem of estimating a low-rank matrix when its entries are perturbed by Gaussian noise. If the empirical distribution of the entries of the spikes is known, optimal estimators that exploit this knowledge can substantially outperform si mple spectral approaches. Recent work characterizes the asymptotic accuracy of Bayes-optimal estimators in the high-dimensional limit. In this paper we present a practical algorithm that can achieve Bayes-optimal accuracy above the spectral threshold. A bold conjecture from statistical physics posits that no polynomial-time algorithm achieves optimal error below the same threshold (unless the best estimator is trivial). Our approach uses Approximate Message Passing (AMP) in conjunction with a spectral initialization. AMP algorithms have proved successful in a variety of statistical estimation tasks, and are amenable to exact asymptotic analysis via state evolution. Unfortunately, state evolution is uninformative when the algorithm is initialized near an unstable fixed point, as often happens in low-rank matrix estimation. We develop a new analysis of AMP that allows for spectral initializations. Our main theorem is general and applies beyond matrix estimation. However, we use it to derive detailed predictions for the problem of estimating a rank-one matrix in noise. Special cases of this problem are closely related---via universality arguments---to the network community detection problem for two asymmetric communities. For general rank-one models, we show that AMP can be used to construct confidence intervals and control false discovery rate. We provide illustrations of the general methodology by considering the cases of sparse low-rank matrices and of block-constant low-rank matrices with symmetric blocks (we refer to the latter as to the `Gaussian Block Model).
A reflexive generalized inverse and the Moore-Penrose inverse are often confused in statistical literature but in fact they have completely different behaviour in case the population covariance matrix is not a multiple of identity. In this paper, we study the spectral properties of a reflexive generalized inverse and of the Moore-Penrose inverse of the sample covariance matrix. The obtained results are used to assess the difference in the asymptotic behaviour of their eigenvalues.
We provide some asymptotic theory for the largest eigenvalues of a sample covariance matrix of a p-dimensional time series where the dimension p = p_n converges to infinity when the sample size n increases. We give a short overview of the literature on the topic both in the light- and heavy-tailed cases when the data have finite (infinite) fourth moment, respectively. Our main focus is on the heavytailed case. In this case, one has a theory for the point process of the normalized eigenvalues of the sample covariance matrix in the iid case but also when rows and columns of the data are linearly dependent. We provide limit results for the weak convergence of these point processes to Poisson or cluster Poisson processes. Based on this convergence we can also derive the limit laws of various function als of the ordered eigenvalues such as the joint convergence of a finite number of the largest order statistics, the joint limit law of the largest eigenvalue and the trace, limit laws for successive ratios of ordered eigenvalues, etc. We also develop some limit theory for the singular values of the sample autocovariance matrices and their sums of squares. The theory is illustrated for simulated data and for the components of the S&P 500 stock index.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا