ﻻ يوجد ملخص باللغة العربية
Here we present the superconducting property and structural stability of kagome CsV3Sb5 under in-situ high pressures. For the initial SC-I phase, its Tc is quickly enhanced from 3.5 K to 7.6 K and then totally suppressed at P~10 GPa. Further increasing the applied pressures, an SC-II phase emerges at P~15 GPa and persists up to 100 GPa. The Tc rapidly increases to the maximal value of 5.2 K at P=53.6 GPa and rather slowly decreases to 4.7 K at P=100 GPa. A two-dome-like variation of Tc in CsV3Sb5 is concluded here. The Raman measurements demonstrate that weakening of E2g model and strengthening of A1g model occur without phase transition as entering the SC-II phase, which is supported by the results of phonon spectra calculations. Electronic structure calculations reveal that exertion of pressure may bridge the gap of topological surface nontrivial states near EF, i. e. Z2 invariant. Meanwhile, it enlarges Fermi surface significantly, consistent with the increased carrier density. The findings here point out the change of electronic structure and strengthened electron-phonon coupling should be responsible for the pressure-induced reentrant SC.
Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3Sb5 single crystal with V kagome lattice are i
Quasi-two-dimensional kagome metals AV3Sb5 (A = K, Rb, and Cs) have attracted much recent interest due to exotic quantum phenomena such as unconventional superconductivity, topological charge order and giant anomalous Hall effect. Here we report pres
Electrical resistivity measurements under high pressures up to 29 GPa were performed for oxypnictide compound LaFeAsO. We found a pressure-induced superconductivity in LaFeAsO. The maximum value of Tc is 21 K at ~12 GPa. The pressure dependence of th
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements of the electrical resistivity. The antiferromagnetic spin-density-wave transition at T_0 associated with the FeAs-layers is continuously suppressed with increasing pressure
The Dirac semimetal PdTe$_2$ was recently reported to be a type-I superconductor ($T_c = $1.64 K, $mu_0 H_c (0) = 13.6$ mT) with unusual superconductivity of the surface sheath. We here report a high-pressure study, $p leq 2.5$ GPa, of the supercondu