ﻻ يوجد ملخص باللغة العربية
The Dirac semimetal PdTe$_2$ was recently reported to be a type-I superconductor ($T_c = $1.64 K, $mu_0 H_c (0) = 13.6$ mT) with unusual superconductivity of the surface sheath. We here report a high-pressure study, $p leq 2.5$ GPa, of the superconducting phase diagram extracted from ac-susceptibility and transport measurements on single crystalline samples. $T_c (p)$ shows a pronounced non-monotonous variation with a maximum $T_c = $1.91 K around 0.91 GPa, followed by a gradual decrease to 1.27 K at 2.5 GPa. The critical field of bulk superconductivity in the limit $T rightarrow 0$, $H_c(0,p)$, follows a similar trend and consequently the $H_c(T,p)$-curves under pressure collapse on a single curve: $H_c(T,p)=H_c(0,p)[1-(T/T_c(p))^2]$. Surface superconductivity is robust under pressure as demonstrated by the large superconducting screening signal that persists for applied dc-fields $H_a > H_c$. Surprisingly, for $p geq 1.41$ GPa the superconducting transition temperature at the surface $T_c^S$ is larger than $T_c$ of the bulk. Therefore surface superconductivity may possibly have a non-trivial nature and is connected to the topological surface states detected by ARPES. We compare the measured pressure variation of $T_c$ with recent results from band structure calculations and discuss the importance of a Van Hove singularity.
The superconductor PdTe$_2$ was recently classified as a Type II Dirac semimetal, and advocated to be an improved platform for topological superconductivity. Here we report magnetic and transport measurements conducted to determine the nature of the
The recently discovered Dirac and Weyl semimetals are new members of topological materials. Starting from them, topological superconductivity may be achieved, e.g. by carrier doping or applying pressure. Here we report high-pressure resistance and X-
Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties b
The type II Dirac semimetal PdTe$_2$ is unique in the family of topological parent materials because it displays a superconducting ground state below 1.7 K. Despite wide speculations on the possibility of an unconventional topological superconducting
A feasible strategy to realize the Majorana fermions is searching for a simple compound with both bulk superconductivity and Dirac surface states. In this paper, we performed calculations of electronic band structure, the Fermi surface and surface st