ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Sub-Cycle Electron Dynamics of Polar Molecules by Asymmetry in Photoelectron Momentum Distributions

57   0   0.0 ( 0 )
 نشر من قبل Yanjun Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong-field ionization of polar molecules contains rich dynamical processes such as tunneling, excitation, and Stark shift. These processes occur on a sub-cycle time scale and are difficult to distinguish in ultrafast measurements. Here, with a developed strong-field model considering effects of both Coulomb and permanent dipole, we show that photoelectron momentum distributions (PMDs) in orthogonal two-color laser fields can be utilized to resolve these processes with attosecond-scale resolution. A feature quantity related to the asymmetry in PMDs is obtained, with which the complex electron dynamics of polar molecules in each half laser cycle is characterized and the subtle time difference when electrons escaping from different sides of the polar molecule is identified.



قيم البحث

اقرأ أيضاً

We study ionization dynamics of aligned diatomic molecules N$_2$ in strong elliptical laser fields experimentally and theoretically. The alignment dependence of photoelectron momentum distributions (PMDs) of N$_2$ measured in experiments is highlight ed with comparing to Ar measured synchronously. Our results show that the PMDs of N$_2$ depend strongly on the alignment of the molecule, relative to the main axis of the laser ellipse. In particular, the most-probable electron-emission angle which is often used in attosecond measurement, differs remarkably when changing the molecular alignment. We show that the interplay of two-center interference and tunneling when the electron goes through the laser-Coulomb-formed barrier, plays an important role in these phenomena. Our work gives suggestions on studying ultrafast electron motion inside aligned molecules.
We use orthogonally polarized two-colour (OTC) laser pulses to separate quantum paths in multiphoton ionization of Ar atoms. Our OTC pulses consist of 400~nm and 800~nm light at a relative intensity ratio of 10:1. We find a hitherto unobserved interf erence in the photoelectron momentum distribution, which exhibits a strong dependence on the relative phase of the OTC pulse. Analysis of model calculations reveal that the interference is caused by quantum pathways from non-adjacent quarter cycles.
We investigate the interwoven dynamic evolutions of neutral nitrogen molecules together with nitrogen ions created through transient tunnel ionization in an intense laser field. By treating the molecules as open quantum systems, it is found that cons idering real-time injection of ions and strong couplings among their electronic states, nitrogen molecular ions are primarily populated in the electronically excited states, rather than staying in the ground state as predicted by the well-known tunneling theory. The unexpected result is attributed to sub-cycle switch-on of time-dependent polarization by transient ionization and dynamic Stark shift mediated near-resonant multiphoton transitions. Their combined contribution also causes that the vibrational distribution of N$_2^+$ does not comply with Franck-Condon principle. These findings corroborate the mechanism of nitrogen molecular ion lasing and are likely to be universal. The present work opens a new route to explore the important role of transient ionization injection in strong-field induced non-equilibrium dynamics.
The combination of photoelectron spectroscopy and ultrafast light sources is on track to set new standards for detailed interrogation of dynamics and reactivity of molecules. A crucial prerequisite for further progress is the ability to not only dete ct the electron kinetic energy, as done in traditional photoelectron spectroscopy, but also the photoelectron angular distributions (PADs) in the molecular frame. Here carbonylsulfide (OCS) and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized, 30 femtosecond laser pulses. For 1-dimensionally oriented OCS the molecular frame PADs exhibit pronounced anisotropies, perpendicular to the fixed permanent dipole moment, that are absent in PADs from randomly oriented molecules. For 3-dimensionally oriented benzonitrile additional striking structures appear due to suppression of electron emission in nodal planes of the fixed electronic orbitals. Our theoretical analysis, relying on tunneling ionization theory, shows that the PADs reflect nodal planes, permanent dipole moments and polarizabilities of both the neutral molecule and its cation. The calculated results are exponentially sensitive to changes in these molecular properties thereby pointing to exciting opportunities for time-resolved probing of valence electrons dynamics by intense circularly polarized pulses. Molecular frame PADs from oriented molecules will prove important in other contexts notably in emerging free-electron-laser studies where localized inner shell electrons are knocked off by x-ray pulses.
We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle f ield-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا