ﻻ يوجد ملخص باللغة العربية
We investigate the interwoven dynamic evolutions of neutral nitrogen molecules together with nitrogen ions created through transient tunnel ionization in an intense laser field. By treating the molecules as open quantum systems, it is found that considering real-time injection of ions and strong couplings among their electronic states, nitrogen molecular ions are primarily populated in the electronically excited states, rather than staying in the ground state as predicted by the well-known tunneling theory. The unexpected result is attributed to sub-cycle switch-on of time-dependent polarization by transient ionization and dynamic Stark shift mediated near-resonant multiphoton transitions. Their combined contribution also causes that the vibrational distribution of N$_2^+$ does not comply with Franck-Condon principle. These findings corroborate the mechanism of nitrogen molecular ion lasing and are likely to be universal. The present work opens a new route to explore the important role of transient ionization injection in strong-field induced non-equilibrium dynamics.
Strong-field ionization of polar molecules contains rich dynamical processes such as tunneling, excitation, and Stark shift. These processes occur on a sub-cycle time scale and are difficult to distinguish in ultrafast measurements. Here, with a deve
The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic generation, where different trajectories leading to th
We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {it ab initio} simulation over a wide range of laser intensities and electron energies.
We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counterrotating circularly polarized fields (390 nm and 780 nm). A pronounced 3D low energy structure and sub-cycl
We report on tunnel ionization of Xe by 2-cycle, intense, infrared laser pulses and its dependence on carrier-envelope-phase (CEP). At low values of optical field ($E$), the ionization yield is maximum for cos-like pulses with the dependence becoming