ﻻ يوجد ملخص باللغة العربية
Orbital monitoring of exoplanetary and stellar systems is fundamental for analysing their architecture, dynamical stability and evolution, and mechanisms of formation. Current high-contrast extreme-adaptive optics imagers like SPHERE, GPI, and SCExAO+CHARIS explore the population of giant exoplanets and brown dwarf and stellar companions beyond typically 10 au, covering generally a small fraction of the orbit (<20%) leading to degeneracies and biases in the orbital parameters. Precise and robust measurements over time of the position of the companions are critical, which require good knowledge of the instrumental limitations and dedicated observing strategies. The homogeneous dedicated calibration strategy for astrometry implemented for SPHERE has facilitated high-precision studies by its users since its start of operation in 2014. As the precision of exoplanet imaging instruments is now reaching milliarcseconds and is expected to improve with the upcoming facilities, we initiated a community effort, triggered by the SPHERE experience, to share lessons learned for high-precision astrometry in direct imaging. A homogeneous strategy would strongly benefit the VLT community, in synergy with VLTI instruments like GRAVITY/GRAVITY+, future instruments like ERIS and MAVIS, and in preparation for the exploitation of the ELTs first instruments MICADO, HARMONI, and METIS.
The consortium of the Spectro-Polarimetric High-contrast Exoplanet REsearch installed at the Very Large Telescope (SPHERE/VLT) has been operating its guaranteed observation time (260 nights over five years) since February 2015. The main part of this
Measuring the orbits of directly-imaged exoplanets requires precise astrometry at the milliarcsec level over long periods of time due to their wide separation to the stars ($gtrsim$10 au) and long orbital period ($gtrsim$20 yr). To reach this challen
Presented here is list of 50 pairs quasi-evenly spaced over the northern sky, and that have Separations and Position Angles accurate at the milli-arcsec, and milli-degree level. These pairs are suggested as calibration pairs for lucky imaging observa
High precision astrometric Space Very Long Baseline Interferometry (S-VLBI) at the low end of the conventional frequency range, i.e. 20cm, is a requirement for a number of high priority science goals. These are headlined by obtaining trigonometric pa
METIS is one of the three first-light instruments planned for the ELT, mainly dedicated to high contrast imaging in the mid-infrared. On the SPHERE high-contrast instrument currently installed at the VLT, we observe that one of the main contrast limi