ﻻ يوجد ملخص باللغة العربية
High precision astrometric Space Very Long Baseline Interferometry (S-VLBI) at the low end of the conventional frequency range, i.e. 20cm, is a requirement for a number of high priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in Pulsar--Black Hole pairs and OH masers anywhere in the Milky Way Galaxy and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8m in size and with ionospheric atmospheres consistant with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.
At sufficiently low frequencies, no ground-based radio array will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lo
We present a multi-calibrator solution, i.e. MultiView, to achieve accurate astrometry on the level of the thermal noise at low VLBI frequencies dominated by ionospheric residuals. We demonstrate on L-band VLBA observations how MultiView provides sup
The SKA will deliver orders of magnitude increases in sensitivity, but most astrometric VLBI observations are limited by systematic errors. In these cases improved sensitivity offers no benefit. The best current solution for improving the accuracy of
The radio sky at lower frequencies, particularly below 20 MHz, is expected to be a combination of increasingly bright non-thermal emission and significant absorption from intervening thermal plasma. The sky maps at these frequencies cannot therefore
We have carried out full imaging simulation studies to explore the impact of frequency standards in millimeter and sub-millimeter Very Long Baseline Interferometry (VLBI), focusing on the coherence time and sensitivity. In particular, we compare the