ترغب بنشر مسار تعليمي؟ اضغط هنا

Bonding nature and optical contrast of $TiTe_2$/$Sb_2Te_3$ phase-change heterostructure

63   0   0.0 ( 0 )
 نشر من قبل Xudong Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chalcogenide phase-change materials (PCMs) are regarded as the leading candidate for storage-class non-volatile memory and neuro-inspired computing. Recently, using the $TiTe_2$/$Sb_2Te_3$ material combination, a new framework - phase-change heterostructure (PCH), has been developed and proved to effectively suppress the noise and drift in electrical resistance upon memory programming, largely reducing the inter-device variability. However, the atomic-scale structural and chemical nature of PCH remains to be fully understood. In this work, we carry out thorough ab initio simulations to assess the bonding characteristics of the PCH. We show that the $TiTe_2$ crystalline nanolayers do not chemically interact with the surrounding $Sb_2Te_3$, and are stabilized by strong covalent and electrostatic Ti-Te interactions, which create a prohibitively high barrier for atomic migrations along the pulsing direction. We also find significant contrast in computed dielectric functions in the PCH, suggesting possible optical applications of this class of devices. With the more confined space and therefore constrained phase transition compared to traditional PCM devices, the recently introduced class of PCH-based devices may lead to improvements in phase-change photonic and optoelectronic applications with much lower stochasticity during programming.

قيم البحث

اقرأ أيضاً

Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at am bient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.
154 - E.Nishibori , M.Takata , M.Sakata 2001
The accurate charge density of MgB2 was observed at room temperature(R.T.) and 15K by the MEM(Maximum Entropy Method)/Rietveld analysis using synchrotron radiation powder data. The obtained charge density clearly revealed the covalent bonding feature of boron forming the 2D honeycomb network in the basal plane, on the other hand, Mg is found to be in divalent state. A subtle but clear charge concentration was found on boron 2D sheets at 15K, which should be relating to superconductivity.
116 - Y. Kim , X. Chen , Z. Wang 2011
Inelastic light scattering spectra of Bi_2Se_3 and Sb_2Te_3 single crystals have been measured over the temperature range from 5 K to 300 K. The temperature dependence of dominant A^{2}_{1g} phonons shows similar behavior in both materials. The tempe rature dependence of the peak position and linewidth is analyzed considering the anharmonic decay of optical phonons and the material thermal expansion. This work suggests that Raman spectroscopy can be used for thermometry in Bi_2Se_3- and Sb_2Te_3-based devices in a wide temperature range.
We have investigated the electronic structure and the Fermi surface of SnO using density functional theory (DFT) calculations within recently proposed exchange-correlation potential (PBE+mBJ) at ambient conditions and high pressures up to 19.3 GPa wh ere superconductivity was observed. It was found that the Sn valence states 5s, 5p, and 5d are strongly hybridized with the O 2p-states, and that our DFT-calculations are in good agreement with O K-edge X-ray spectroscopy measurements for both occupied and empty states. It was demonstrated that the metallic states appearing under pressure in the semiconducting gap stem due to the transformation of the weakly hybridized O 2p-Sn 5sp subband corresponding to the lowest valence state of Sn in SnO. We discuss the nature of the electronic states involved in chemical bonding and formation of the hole and electron pockets with nesting as a possible way to superconductivity.
Changing the interlayer exchange coupling between magnetic layers in-situ is a key issue of spintronics, as it allows for the optimization of properties that are desirable for applications, including magnetic sensing and memory. In this paper, we uti lize the phase change material VO2 as a spacer layer to regulate the interlayer exchange coupling between ferromagnetic layers with perpendicular magnetic anisotropy. The successful growth of ultra-thin (several nanometres) VO2 films is realized by sputtering at room temperature, which further enables the fabrication of [Pt/Co]2/VO2/[Co/Pt]2 multilayers with distinct interfaces. Such a magnetic multilayer exhibits an evolution from antiferromagnetic coupling to ferromagnetic coupling as the VO2 undergoes a phase change. The underlying mechanism originates from the change in the electronic structure of the spacer layer from an insulating to a metallic state. As a demonstration of phase change spintronics, this work may reveal the great potential of material innovations for next-generation spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا