ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-Change Control of Interlayer Exchange Coupling

86   0   0.0 ( 0 )
 نشر من قبل Xiaoyang Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Changing the interlayer exchange coupling between magnetic layers in-situ is a key issue of spintronics, as it allows for the optimization of properties that are desirable for applications, including magnetic sensing and memory. In this paper, we utilize the phase change material VO2 as a spacer layer to regulate the interlayer exchange coupling between ferromagnetic layers with perpendicular magnetic anisotropy. The successful growth of ultra-thin (several nanometres) VO2 films is realized by sputtering at room temperature, which further enables the fabrication of [Pt/Co]2/VO2/[Co/Pt]2 multilayers with distinct interfaces. Such a magnetic multilayer exhibits an evolution from antiferromagnetic coupling to ferromagnetic coupling as the VO2 undergoes a phase change. The underlying mechanism originates from the change in the electronic structure of the spacer layer from an insulating to a metallic state. As a demonstration of phase change spintronics, this work may reveal the great potential of material innovations for next-generation spintronics.



قيم البحث

اقرأ أيضاً

For epitaxial trilayers of the magnetic rare-earth metals Gd and Tb, exchange coupled through a non-magnetic Y spacer layer, element-specific hysteresis loops were recorded by the x-ray magneto-optical Kerr effect at the rare-earth $M_5$ thresholds. This allowed us to quantitatively determine the strength of interlayer exchange coupling (IEC). In addition to the expected oscillatory behavior as a function of spacer-layer thickness $d_Y$, a temperature-induced sign reversal of IEC was observed for constant $d_Y$, arising from magnetization-dependent electron reflectivities at the magnetic interfaces.
The manipulation of the antiferromagnetic interlayer coupling in the epitaxial Fe/Cr/Fe(001) trilayer system by moderate 5 keV He ion beam irradiation has been investigated experimentally. It is shown that even for irradiation with very low fluences (10^14 ions/cm^2) a drastic change in strength of the coupling appears. For thin Cr-spacers (below 0.6 - 0.7 nm) the coupling strength decreases with fluence, becoming ferromagnetic for fluences above (2x10^14 ions/cm^2). The effect is connected with the creation of magnetic bridges in the layered system due to atomic exchange events caused by the bombardment. For thicker Cr spacers (0.8 - 1.2 nm) an enhancement of the antiferromagnetic coupling strength is found. A possible explanation of the enhancement effect is given.
Interlayer exchange couplings were examined for Co2FeAl0.5Si0.5(CFAS)/Cr/CFAS trilayered films grown on MgO (001) single crystal and thermally oxidized Si substrates. The films were (001) epitaxial on MgO and (110) textured polycrystalline on SiO2. S trong exchange couplings were observed for the films with the 1.5 nm thick Cr spacer layer. A 90 degree coupling is dominant in the (001) epitaxial film. In contrast, an antiparallel coupling exists in the polycrystalline one. The relationship of interlayer couplings with the structure is discussed.
Metallic superlattices where the magnetization vectors in the adjacent ferromagnetic layers are antiferromagnetically coupled by the interlayer exchange coupling through nonmagnetic spacer layers are systems available for the systematic study on anti ferromagnetic (AF) spintronics. As a candidate of nonmagnetic spacer layer material exhibiting remarkable spin Hall effect, which is essential to achieve spin-orbit torque switching, we selected the Ir-doped Cu in this study. The AF-coupling for the Co / Cu$_{95}$Ir$_{5}$ / Co was investigated, and was compared with those for the Co / Cu / Co and Co / Ir / Co. The maximum magnitude of AF-coupling strength was obtained to be 0.39 mJ/m$^{2}$ at the Cu$_{95}$Ir$_{5}$ thickness of about 0.75 nm. Furthermore, we found a large spin Hall angle of Cu$_{95}$Ir$_{5}$ in Co / Cu$_{95}$Ir$_{5}$ bilayers by carrying out spin Hall magnetoresistance and harmonic Hall voltage measurements, which are estimated to be 3 ~ 4 %. Our experimental results clearly indicate that Cu$_{95}$Ir$_{5}$ is a nonmagnetic spacer layer allowing us to achieve moderately strong AF-coupling and to generate appreciable spin-orbit torque via the spin Hall effect.
We study the combined effects of spin transfer torque, voltage modulation of interlayer exchange coupling and magnetic anisotropy on the switching behavior of perpendicular magnetic tunnel junctions (p-MTJs). In asymmetric p-MTJs, a linear-in-voltage dependence of interlayer exchange coupling enables the effective perpendicular anisotropy barrier to be lowered for both voltage polarities. This mechanism is shown to reduce the critical switching current and effective activation energy. Finally, we analyze the possibility of having switching via interlayer exchange coupling only.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا