ترغب بنشر مسار تعليمي؟ اضغط هنا

Marangoni Convection-Driven Laser Fountains and Waves on Free Surfaces of Liquids

55   0   0.0 ( 0 )
 نشر من قبل Feng Lin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well accepted that an outward Marangoni convection from a low surface tension region will make the surface depressed. Here, we report that this established perception is only valid for thin liquid films. Using surface laser heating, we show that in deep liquids a laser beam actually pulls up the fluid above the free surface generating fountains with different shapes. Whereas with decreasing liquid depth a transition from fountain to indentation with fountain in-indentation is observed. Further, high-speed imaging reveals a transient surface process before steady elevation is formed, and this dynamic deformation is subsequently utilized to resonantly excite giant surface waves by a modulated laser beam. Computational fluid dynamics models reveal the underlying flow patterns and quantify the depth-dependent and time-resolved surface deformations. Our discoveries and techniques have upended the century-old perception and opened up a new regime of interdisciplinary research and applications of Marangoni-induced interface phenomena and optocapillary fluidic surfaces-the control of fluids with light.



قيم البحث

اقرأ أيضاً

The vertical heat transfer in Benard-Marangoni convection of a fluid layer with infinite Prandtl number is studied by means of upper bounds on the Nusselt number $Nu$ as a function of the Marangoni number $Ma$. Using the background method for the tem perature field, it has recently been proven by Hagstrom & Doering that $ Nuleq 0.838,Ma^{2/7}$. In this work we extend previous background method analysis to include balance parameters and derive a variational principle for the bound on $Nu$, expressed in terms of a scaled background field, that yields a better bound than Hagstrom & Doerings formulation at a given $Ma$. Using a piecewise-linear, monotonically decreasing profile we then show that $Nu leq 0.803,Ma^{2/7}$, lowering the previous prefactor by 4.2%. However, we also demonstrate that optimisation of the balance parameters does not affect the asymptotic scaling of the optimal bound achievable with Hagstrom & Doerings original formulation. We subsequently utilise convex optimisation to optimise the bound on $Nu$ over all admissible background fields, as well as over two smaller families of profiles constrained by monotonicity and convexity. The results show that $Nu leq O(Ma^{2/7}(ln Ma)^{-1/2})$ when the background field has a non-monotonic boundary layer near the surface, while a power-law bound with exponent 2/7 is optimal within the class of monotonic background fields. Further analysis of our upper-bounding principle reveals the role of non-monotonicity, and how it may be exploited in a rigorous mathematical argument.
We prove a new rigorous upper bound on the vertical heat transport for Benard-Marangoni convection of a two- or three-dimensional fluid layer with infinite Prandtl number. Precisely, for Marangoni number $Ma gg 1$ the Nusselt number $Nu$ is bounded a symptotically by $Nu lesssim Ma^{2/7}(ln Ma)^{-1/7}$. Key to our proof are a background temperature field with a hyperbolic profile near the fluids surface, and new estimates for the coupling between temperature and vertical velocity.
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula r or beeline motion in a circular Petri dish. The motion of a droplet depends on volume of the droplet and concentration of solution. The velocity decreases when volume of the droplet and concentration of solution increase. Such unique motion is discussed in terms of Marangoni-driven spreading under chemical nonequilibrium. The simulation reproduces the mode of motion in a circular Petri dish.
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
The relative importance of the helicity and cross-helicity electromotive dynamo effects for self-sustained magnetic field generation by chaotic thermal convection in rotating spherical shells is investigated as a function of shell thickness. Two dist inct branches of dynamo solutions are found to coexist in direct numerical simulations for shell aspect ratios between 0.25 and 0.6 - a mean-field dipolar regime and a fluctuating dipolar regime. The properties characterising the coexisting dynamo attractors are compared and contrasted, including differences in temporal behavior and spatial structures of both the magnetic field and rotating thermal convection. The helicity $alpha$-effect and the cross-helicity $gamma$-effect are found to be comparable in intensity within the fluctuating dipolar dynamo regime, where their ratio does not vary significantly with the shell thickness. In contrast, within the mean-field dipolar dynamo regime the helicity $alpha$-effect dominates by approximately two orders of magnitude and becomes stronger with decreasing shell thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا