ﻻ يوجد ملخص باللغة العربية
We prove a new rigorous upper bound on the vertical heat transport for Benard-Marangoni convection of a two- or three-dimensional fluid layer with infinite Prandtl number. Precisely, for Marangoni number $Ma gg 1$ the Nusselt number $Nu$ is bounded asymptotically by $Nu lesssim Ma^{2/7}(ln Ma)^{-1/7}$. Key to our proof are a background temperature field with a hyperbolic profile near the fluids surface, and new estimates for the coupling between temperature and vertical velocity.
The vertical heat transfer in Benard-Marangoni convection of a fluid layer with infinite Prandtl number is studied by means of upper bounds on the Nusselt number $Nu$ as a function of the Marangoni number $Ma$. Using the background method for the tem
Using direct numerical simulations, we study the statistical properties of reversals in two-dimensional Rayleigh-Benard convection for infinite Prandtl number. We find that the large-scale circulation reverses irregularly, with the waiting time betwe
We study, using direct numerical simulations, the effect of geometrical confinement on heat transport and flow structure in Rayleigh-Benard convection in fluids with different Prandtl numbers. Our simulations span over two decades of Prandtl number $
Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with different
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$