ﻻ يوجد ملخص باللغة العربية
We have studied the evolution of different timing and spectral properties of the X-ray pulsar 2S 1417--624 during the recent outburst in January 2021 based on the Neutron Star Interior Composition Explorer (NICER) observations. The spin period during the outburst is $P sim$17.3622 s based on the NICER data and the period decreases slowly with time. The evolution of the spin period and pulsed flux is studied with Fermi/GBM during the outburst and the spin-up rate was found to be varied between $simeq$(0.8--1.8)$times$10$^{-11}$ Hz s$^{-1}$. The pulse profile shows strong energy dependence and variability. The pulse profile shows multiple peaks and dips which evolve significantly with energy. The pulsed fraction shows a positive correlation with energy. The evolution of the spectral state is also studied. The NICER energy spectrum is well described with a composite model of -- power-law and a blackbody emission along with a photo-electric absorption component. An iron emission line is detected near 6.4 keV in the NICER spectrum with an equivalent width of about 0.05 keV. During the recent outburst, the flux was relatively low compared to the 2018 outburst and the mass accretion rate was also low. The mass accretion rate is estimated to be $simeq$1.3 $times$ 10$^{17}$ g s$^{-1}$ near the peak of the outburst. We have found a positive correlation between the pulse frequency derivatives and luminosity. The GL model was applied to estimate the magnetic field in low mass accretion rate and different spin-up rates, which is compared to the earlier estimated magnetic field at a relatively high mass accretion rate. The magnetic field is estimated to be $simeq$10$^{14}$ G from the torque-luminosity model, which is comparatively higher than most of the other Be/XBPs.
We investigate timing and spectral characteristics of the transient X-ray pulsar 2S 1417$-$624 during its 2018 outburst with emph{NICER} follow up observations. We describe the spectra with high-energy cut-off and partial covering fraction absortion
We present a study of timing properties of the accreting pulsar 2S 1417-624 observed during its 2018 outburst, based on Swift/BAT, Fermi/GBM, Insight-HXMT and NICER observations. We report a dramatic change of the pulse profiles with luminosity. The
We summarize the results of temporal and spectral analysis of the X-ray pulsar 2S 1553-542 using the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift during the outburst in January-February 2021. During the outburst, the spin period of the ne
RXTE observations of the X-ray transient pulsar 2S 1417-62 between 1999 November and 2000 August with a total exposure of $sim 394$ ksec were analyzed. Observations include a main outburst followed by a series of mini outbursts. Changes in pulse morp
We present results from a study of broadband timing and spectral properties of EXO 2030+375 using a Suzaku observation. Pulsations with a period of 41.41 s and strong energy dependent pulse profiles were clearly detected up to ~100 keV. Narrow dips a