ﻻ يوجد ملخص باللغة العربية
Several quantum many-body models in one dimension possess exact solutions via the Bethe ansatz method, which has been highly successful for understanding their behavior. Nevertheless, there remain physical properties of such models for which analytic results are unavailable, and which are also not well-described by approximate numerical methods. Preparing Bethe ansatz eigenstates directly on a quantum computer would allow straightforward extraction of these quantities via measurement. We present a quantum algorithm for preparing Bethe ansatz eigenstates of the XXZ spin chain that correspond to real-valued solutions of the Bethe equations. The algorithm is polynomial in the number of T gates and circuit depth, with modest constant prefactors. Although the algorithm is probabilistic, with a success rate that decreases with increasing eigenstate energy, we employ amplitude amplification to boost the success probability. The resource requirements for our approach are lower than other state-of-the-art quantum simulation algorithms for small error-corrected devices, and thus may offer an alternative and computationally less-demanding demonstration of quantum advantage for physically relevant problems.
We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm, by treating Bethe states as variational states, and Bethe roots as variational parameters. For short chain
The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is the paradigmatic example of a quantum integrable model with open boundary conditions. We formulate a quantum algorithm for preparing Bethe states of this model, corresponding
A key requirement to perform simulations of large quantum systems on near-term quantum hardware is the design of quantum algorithms with short circuit depth that finish within the available coherence time. A way to stay within the limits of coherence
We analyze the conditions for producing atomic number states in a one-dimensional optical box using the Bethe ansatz method. This approach provides a general framework, enabling the study of number state production over a wide range of realistic experimental parameters.
In this paper, we investigate the effect of different optical field initial states on the performance of Tavis-Cummings(T-C) quantum battery. In solving the dynamical evolution of the system, we found a fast way to solve the Bethe ansatz equation. We