ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of Atomic Number States: a Bethe Ansatz Approach

149   0   0.0 ( 0 )
 نشر من قبل Shoupu Wan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the conditions for producing atomic number states in a one-dimensional optical box using the Bethe ansatz method. This approach provides a general framework, enabling the study of number state production over a wide range of realistic experimental parameters.



قيم البحث

اقرأ أيضاً

We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm, by treating Bethe states as variational states, and Bethe roots as variational parameters. For short chain s, we construct exact one-magnon trial states that are functions of the variational parameter, and implement the VQE calculations in Qiskit. However, exact multi-magnon trial states appear to be out out of reach.
Several quantum many-body models in one dimension possess exact solutions via the Bethe ansatz method, which has been highly successful for understanding their behavior. Nevertheless, there remain physical properties of such models for which analytic results are unavailable, and which are also not well-described by approximate numerical methods. Preparing Bethe ansatz eigenstates directly on a quantum computer would allow straightforward extraction of these quantities via measurement. We present a quantum algorithm for preparing Bethe ansatz eigenstates of the XXZ spin chain that correspond to real-valued solutions of the Bethe equations. The algorithm is polynomial in the number of T gates and circuit depth, with modest constant prefactors. Although the algorithm is probabilistic, with a success rate that decreases with increasing eigenstate energy, we employ amplitude amplification to boost the success probability. The resource requirements for our approach are lower than other state-of-the-art quantum simulation algorithms for small error-corrected devices, and thus may offer an alternative and computationally less-demanding demonstration of quantum advantage for physically relevant problems.
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal bas is of the Hilbert space. With the XXZ spin torus model and the open XXX spin-1/2 chain as examples, we show that for a given inhomogeneous T-Q relation and the associated Bethe Ansatz equations, the constructed Bethe-type eigenstate has a well-defined homogeneous limit.
We use the coordinate Bethe ansatz to exactly calculate matrix elements between eigenstates of the Lieb-Liniger model of one-dimensional bosons interacting via a two-body delta-potential. We investigate the static correlation functions of the zero-te mperature ground state and their dependence on interaction strength, and analyze the effects of system size in the crossover from few-body to mesoscopic regimes for up to seven particles. We also obtain time-dependent nonequilibrium correlation functions for five particles following quenches of the interaction strength from two distinct initial states. One quench is from the non-interacting ground state and the other from a correlated ground state near the strongly interacting Tonks-Girardeau regime. The final interaction strength and conserved energy are chosen to be the same for both quenches. The integrability of the model highly constrains its dynamics, and we demonstrate that the time-averaged correlation functions following quenches from these two distinct initial conditions are both nonthermal and moreover distinct from one another.
224 - S. De Palo , R. Citro , E. Orignac 2019
We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as a function of density and the determination of the structure factor at small momenta. Moreover, in the case of attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا