ترغب بنشر مسار تعليمي؟ اضغط هنا

Vulnerability of Appearance-based Gaze Estimation

119   0   0.0 ( 0 )
 نشر من قبل Mingjie Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Appearance-based gaze estimation has achieved significant improvement by using deep learning. However, many deep learning-based methods suffer from the vulnerability property, i.e., perturbing the raw image using noise confuses the gaze estimation models. Although the perturbed image visually looks similar to the original image, the gaze estimation models output the wrong gaze direction. In this paper, we investigate the vulnerability of appearance-based gaze estimation. To our knowledge, this is the first time that the vulnerability of gaze estimation to be found. We systematically characterized the vulnerability property from multiple aspects, the pixel-based adversarial attack, the patch-based adversarial attack and the defense strategy. Our experimental results demonstrate that the CA-Net shows superior performance against attack among the four popular appearance-based gaze estimation networks, Full-Face, Gaze-Net, CA-Net and RT-GENE. This study draws the attention of researchers in the appearance-based gaze estimation community to defense from adversarial attacks.



قيم البحث

اقرأ أيضاً

Learning-based methods are believed to work well for unconstrained gaze estimation, i.e. gaze estimation from a monocular RGB camera without assumptions regarding user, environment, or camera. However, current gaze datasets were collected under labor atory conditions and methods were not evaluated across multiple datasets. Our work makes three contributions towards addressing these limitations. First, we present the MPIIGaze that contains 213,659 full face images and corresponding ground-truth gaze positions collected from 15 users during everyday laptop use over several months. An experience sampling approach ensured continuous gaze and head poses and realistic variation in eye appearance and illumination. To facilitate cross-dataset evaluations, 37,667 images were manually annotated with eye corners, mouth corners, and pupil centres. Second, we present an extensive evaluation of state-of-the-art gaze estimation methods on three current datasets, including MPIIGaze. We study key challenges including target gaze range, illumination conditions, and facial appearance variation. We show that image resolution and the use of both eyes affect gaze estimation performance while head pose and pupil centre information are less informative. Finally, we propose GazeNet, the first deep appearance-based gaze estimation method. GazeNet improves the state of the art by 22% percent (from a mean error of 13.9 degrees to 10.8 degrees) for the most challenging cross-dataset evaluation.
Estimating human gaze from natural eye images only is a challenging task. Gaze direction can be defined by the pupil- and the eyeball center where the latter is unobservable in 2D images. Hence, achieving highly accurate gaze estimates is an ill-pose d problem. In this paper, we introduce a novel deep neural network architecture specifically designed for the task of gaze estimation from single eye input. Instead of directly regressing two angles for the pitch and yaw of the eyeball, we regress to an intermediate pictorial representation which in turn simplifies the task of 3D gaze direction estimation. Our quantitative and qualitative results show that our approach achieves higher accuracies than the state-of-the-art and is robust to variation in gaze, head pose and image quality.
Appearance-based gaze estimation methods that only require an off-the-shelf camera have significantly improved but they are still not yet widely used in the human-computer interaction (HCI) community. This is partly because it remains unclear how the y perform compared to model-based approaches as well as dominant, special-purpose eye tracking equipment. To address this limitation, we evaluate the performance of state-of-the-art appearance-based gaze estimation for interaction scenarios with and without personal calibration, indoors and outdoors, for different sensing distances, as well as for users with and without glasses. We discuss the obtained findings and their implications for the most important gaze-based applications, namely explicit eye input, attentive user interfaces, gaze-based user modelling, and passive eye monitoring. To democratise the use of appearance-based gaze estimation and interaction in HCI, we finally present OpenGaze (www.opengaze.org), the first software toolkit for appearance-based gaze estimation and interaction.
A drivers gaze is critical for determining their attention, state, situational awareness, and readiness to take over control from partially automated vehicles. Estimating the gaze direction is the most obvious way to gauge a drivers state under ideal conditions when limited to using non-intrusive imaging sensors. Unfortunately, the vehicular environment introduces a variety of challenges that are usually unaccounted for - harsh illumination, nighttime conditions, and reflective eyeglasses. Relying on head pose alone under such conditions can prove to be unreliable and erroneous. In this study, we offer solutions to address these problems encountered in the real world. To solve issues with lighting, we demonstrate that using an infrared camera with suitable equalization and normalization suffices. To handle eyeglasses and their corresponding artifacts, we adopt image-to-image translation using generative adversarial networks to pre-process images prior to gaze estimation. Our proposed Gaze Preserving CycleGAN (GPCycleGAN) is trained to preserve the drivers gaze while removing potential eyeglasses from face images. GPCycleGAN is based on the well-known CycleGAN approach - with the addition of a gaze classifier and a gaze consistency loss for additional supervision. Our approach exhibits improved performance, interpretability, robustness and superior qualitative results on challenging real-world datasets.
Effective assisted living environments must be able to perform inferences on how their occupants interact with one another as well as with surrounding objects. To accomplish this goal using a vision-based automated approach, multiple tasks such as po se estimation, object segmentation and gaze estimation must be addressed. Gaze direction in particular provides some of the strongest indications of how a person interacts with the environment. In this paper, we propose a simple neural network regressor that estimates the gaze direction of individuals in a multi-camera assisted living scenario, relying only on the relative positions of facial keypoints collected from a single pose estimation model. To handle cases of keypoint occlusion, our model exploits a novel confidence gated unit in its input layer. In addition to the gaze direction, our model also outputs an estimation of its own prediction uncertainty. Experimental results on a public benchmark demonstrate that our approach performs on pair with a complex, dataset-specific baseline, while its uncertainty predictions are highly correlated to the actual angular error of corresponding estimations. Finally, experiments on images from a real assisted living environment demonstrate the higher suitability of our model for its final application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا