ﻻ يوجد ملخص باللغة العربية
Learning-based methods are believed to work well for unconstrained gaze estimation, i.e. gaze estimation from a monocular RGB camera without assumptions regarding user, environment, or camera. However, current gaze datasets were collected under laboratory conditions and methods were not evaluated across multiple datasets. Our work makes three contributions towards addressing these limitations. First, we present the MPIIGaze that contains 213,659 full face images and corresponding ground-truth gaze positions collected from 15 users during everyday laptop use over several months. An experience sampling approach ensured continuous gaze and head poses and realistic variation in eye appearance and illumination. To facilitate cross-dataset evaluations, 37,667 images were manually annotated with eye corners, mouth corners, and pupil centres. Second, we present an extensive evaluation of state-of-the-art gaze estimation methods on three current datasets, including MPIIGaze. We study key challenges including target gaze range, illumination conditions, and facial appearance variation. We show that image resolution and the use of both eyes affect gaze estimation performance while head pose and pupil centre information are less informative. Finally, we propose GazeNet, the first deep appearance-based gaze estimation method. GazeNet improves the state of the art by 22% percent (from a mean error of 13.9 degrees to 10.8 degrees) for the most challenging cross-dataset evaluation.
Appearance-based gaze estimation has achieved significant improvement by using deep learning. However, many deep learning-based methods suffer from the vulnerability property, i.e., perturbing the raw image using noise confuses the gaze estimation mo
Estimating human gaze from natural eye images only is a challenging task. Gaze direction can be defined by the pupil- and the eyeball center where the latter is unobservable in 2D images. Hence, achieving highly accurate gaze estimates is an ill-pose
Gaze estimation is a fundamental task in many applications of computer vision, human computer interaction and robotics. Many state-of-the-art methods are trained and tested on custom datasets, making comparison across methods challenging. Furthermore
Nowadays, billions of videos are online ready to be viewed and shared. Among an enormous volume of videos, some popular ones are widely viewed by online users while the majority attract little attention. Furthermore, within each video, different segm
Due to the lack of a large-scale reflection removal dataset with diverse real-world scenes, many existing reflection removal methods are trained on synthetic data plus a small amount of real-world data, which makes it difficult to evaluate the streng