ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoMix: Unveiling the Power of Mixup

78   0   0.0 ( 0 )
 نشر من قبل Siyuan Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mixup-based data augmentation has achieved great success as regularizer for deep neural networks. However, existing mixup methods require explicitly designed mixup policies. In this paper, we present a flexible, general Automatic Mixup (AutoMix) framework which utilizes discriminative features to learn a sample mixing policy adaptively. We regard mixup as a pretext task and split it into two sub-problems: mixed samples generation and mixup classification. To this end, we design a lightweight mix block to generate synthetic samples based on feature maps and mix labels. Since the two sub-problems are in the nature of Expectation-Maximization (EM), we also propose a momentum training pipeline to optimize the mixup process and mixup classification process alternatively in an end-to-end fashion. Extensive experiments on six popular classification benchmarks show that AutoMix consistently outperforms other leading mixup methods and improves generalization abilities to downstream tasks. We hope AutoMix will motivate the community to rethink the role of mixup in representation learning. The code will be released soon.


قيم البحث

اقرأ أيضاً

RGBD (RGB plus depth) object tracking is gaining momentum as RGBD sensors have become popular in many application fields such as robotics.However, the best RGBD trackers are extensions of the state-of-the-art deep RGB trackers. They are trained with RGB data and the depth channel is used as a sidekick for subtleties such as occlusion detection. This can be explained by the fact that there are no sufficiently large RGBD datasets to 1) train deep depth trackers and to 2) challenge RGB trackers with sequences for which the depth cue is essential. This work introduces a new RGBD tracking dataset - Depth-Track - that has twice as many sequences (200) and scene types (40) than in the largest existing dataset, and three times more objects (90). In addition, the average length of the sequences (1473), the number of deformable objects (16) and the number of annotated tracking attributes (15) have been increased. Furthermore, by running the SotA RGB and RGBD trackers on DepthTrack, we propose a new RGBD tracking baseline, namely DeT, which reveals that deep RGBD tracking indeed benefits from genuine training data. The code and dataset is available at https://github.com/xiaozai/DeT
In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation pro tocol. Firstly, we collect 4M name list and download 260M faces from the Internet. Then, a Cleaning Automatically utilizing Self-Training (CAST) pipeline is devised to purify the tremendous WebFace260M, which is efficient and scalable. To the best of our knowledge, the cleaned WebFace42M is the largest public face recognition training set and we expect to close the data gap between academia and industry. Referring to practical scenarios, Face Recognition Under Inference Time conStraint (FRUITS) protocol and a test set are constructed to comprehensively evaluate face matchers. Equipped with this benchmark, we delve into million-scale face recognition problems. A distributed framework is developed to train face recognition models efficiently without tampering with the performance. Empowered by WebFace42M, we reduce relative 40% failure rate on the challenging IJB-C set, and ranks the 3rd among 430 entries on NIST-FRVT. Even 10% data (WebFace4M) shows superior performance compared with public training set. Furthermore, comprehensive baselines are established on our rich-attribute test set under FRUITS-100ms/500ms/1000ms protocol, including MobileNet, EfficientNet, AttentionNet, ResNet, SENet, ResNeXt and RegNet families. Benchmark website is https://www.face-benchmark.org.
Deep image classifiers often perform poorly when training data are heavily class-imbalanced. In this work, we propose a new regularization technique, Remix, that relaxes Mixups formulation and enables the mixing factors of features and labels to be d isentangled. Specifically, when mixing two samples, while features are mixed in the same fashion as Mixup, Remix assigns the label in favor of the minority class by providing a disproportionately higher weight to the minority class. By doing so, the classifier learns to push the decision boundaries towards the majority classes and balance the generalization error between majority and minority classes. We have studied the state-of-the art regularization techniques such as Mixup, Manifold Mixup and CutMix under class-imbalanced regime, and shown that the proposed Remix significantly outperforms these state-of-the-arts and several re-weighting and re-sampling techniques, on the imbalanced datasets constructed by CIFAR-10, CIFAR-100, and CINIC-10. We have also evaluated Remix on a real-world large-scale imbalanced dataset, iNaturalist 2018. The experimental results confirmed that Remix provides consistent and significant improvements over the previous methods.
We present HandGAN (H-GAN), a cycle-consistent adversarial learning approach implementing multi-scale perceptual discriminators. It is designed to translate synthetic images of hands to the real domain. Synthetic hands provide complete ground-truth a nnotations, yet they are not representative of the target distribution of real-world data. We strive to provide the perfect blend of a realistic hand appearance with synthetic annotations. Relying on image-to-image translation, we improve the appearance of synthetic hands to approximate the statistical distribution underlying a collection of real images of hands. H-GAN tackles not only the cross-domain tone mapping but also structural differences in localized areas such as shading discontinuities. Results are evaluated on a qualitative and quantitative basis improving previous works. Furthermore, we relied on the hand classification task to claim our generated hands are statistically similar to the real domain of hands.
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا