ترغب بنشر مسار تعليمي؟ اضغط هنا

Countably compact group topologies on arbitrarily large free Abelian groups

135   0   0.0 ( 0 )
 نشر من قبل Vinicius Rodrigues
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that if there are $mathfrak c$ incomparable selective ultrafilters then, for every infinite cardinal $kappa$ such that $kappa^omega=kappa$, there exists a group topology on the free Abelian group of cardinality $kappa$ without nontrivial convergent sequences and such that every finite power is countably compact. In particular, there are arbitrarily large countably compact groups. This answers a 1992 question of D. Dikranjan and D. Shakhmatov.

قيم البحث

اقرأ أيضاً

We prove that the existence of a selective ultrafilter implies the existence of a countably compact Hausdorff group topology on the free Abelian group of size continuum. As a consequence, we show that the existence of a selective ultrafilter implies the existence of a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group).
72 - Tomasz Rzepecki 2016
We extend some recent results about bounded invariant equivalence relations and invariant subgroups of definable groups: we show that type-definability and smoothness are equivalent conditions in a wider class of relations than heretofore considered, which includes all the cases for which the equivalence was proved before. As a by-product, we show some analogous results in purely topological context (without direct use of model theory).
We show a number of undecidable assertions concerning countably compact spaces hold under PFA(S)[S]. We also show the consistency without large cardinals of every locally compact, perfectly normal space is paracompact.
Consider a group word w in n letters. For a compact group G, w induces a map G^n rightarrow G$ and thus a pushforward measure {mu}_w on G from the Haar measure on G^n. We associate to each word w a 2-dimensional cell complex X(w) and prove in Theorem 2.5 that {mu}_w is determined by the topology of X(w). The proof makes use of non-abelian cohomology and Nielsens classification of automorphisms of free groups [Nie24]. Focusing on the case when X(w) is a surface, we rediscover representation-theoretic formulas for {mu}_w that were derived by Witten in the context of quantum gauge theory [Wit91]. These formulas generalize a result of ErdH{o}s and Turan on the probability that two random elements of a finite group commute [ET68]. As another corollary, we give an elementary proof that the dimension of an irreducible complex representation of a finite group divides the order of the group; the only ingredients are Schurs lemma, basic counting, and a divisibility argument.
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorv{c}evi{c} theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the univers al ambit as a certain space of types in an expanded language. Using this, we recover various results of Kechris-Pestov-Todorv{c}evi{c}, Moore, Ngyuen Van Th{e}, in the context of automorphism groups of not necessarily countable structures, as well as Zucker.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا