ﻻ يوجد ملخص باللغة العربية
We prove that if there are $mathfrak c$ incomparable selective ultrafilters then, for every infinite cardinal $kappa$ such that $kappa^omega=kappa$, there exists a group topology on the free Abelian group of cardinality $kappa$ without nontrivial convergent sequences and such that every finite power is countably compact. In particular, there are arbitrarily large countably compact groups. This answers a 1992 question of D. Dikranjan and D. Shakhmatov.
We prove that the existence of a selective ultrafilter implies the existence of a countably compact Hausdorff group topology on the free Abelian group of size continuum. As a consequence, we show that the existence of a selective ultrafilter implies
We extend some recent results about bounded invariant equivalence relations and invariant subgroups of definable groups: we show that type-definability and smoothness are equivalent conditions in a wider class of relations than heretofore considered,
We show a number of undecidable assertions concerning countably compact spaces hold under PFA(S)[S]. We also show the consistency without large cardinals of every locally compact, perfectly normal space is paracompact.
Consider a group word w in n letters. For a compact group G, w induces a map G^n rightarrow G$ and thus a pushforward measure {mu}_w on G from the Haar measure on G^n. We associate to each word w a 2-dimensional cell complex X(w) and prove in Theorem
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorv{c}evi{c} theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the univers