ﻻ يوجد ملخص باللغة العربية
We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorv{c}evi{c} theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the universal ambit as a certain space of types in an expanded language. Using this, we recover various results of Kechris-Pestov-Todorv{c}evi{c}, Moore, Ngyuen Van Th{e}, in the context of automorphism groups of not necessarily countable structures, as well as Zucker.
For a group $G$ first order definable in a structure $M$, we continue the study of the definable topological dynamics of $G$. The special case when all subsets of $G$ are definable in the given structure $M$ is simply the usual topological dynamics o
We examine topological dynamical systems on the Cantor set from the point of view of the continuous model theory of commutative C*-algebras. After some general remarks we focus our attention on the generic homeomorphism of the Cantor set, as construc
We will review the main results concerning the automorphism groups of saturated structures which were obtained during the two last decades. The main themes are: the small index property in the countable and uncountable cases; the possibility of recov
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
We initiate the study of p-adic algebraic groups G from the stability-theoretic and definable topological-dynamical points of view, that is, we consider invariants of the action of G on its space of types over Q_p in the language of fields. We consid