ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet Higher-Order Topological Insulators with Anomalous Dynamical Polarization

124   0   0.0 ( 0 )
 نشر من قبل Biao Huang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Higher order topological insulators (HOTI) have emerged as a new class of phases, whose robust in-gap corner modes arise from the bulk higher-order multipoles beyond the dipoles in conventional topological insulators. Here, we incorporate Floquet driving into HOTIs, and report for the first time a dynamical polarization theory with anomalous non-equilibrium multipoles. Further, a proposal to detect not only corner states but also their dynamical origin in cold atoms is demonstrated, with the latter one never achieved before. Experimental determination of anomalous Floquet corner modes are also proposed.

قيم البحث

اقرأ أيضاً

We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floque t quadrupole and octupole insulators with zero- and/or $pi$-corner modes protected by mirror symmetries. Furthermore, we introduce dynamical topological invariants from the full unitary return map and show its phase bands contain Weyl singularities whose topological charges form dynamical multipole moments in the Brillouin zone. Combining them with the topological index of Floquet Hamiltonian gives a pair of $mathbb{Z}_2$ invariant $ u_0$ and $ u_pi$ which fully characterize the higher-order topology and predict the appearance of zero- and $pi$-corner modes. Our work establishes a systematic route to construct and characterize Floquet higher-order topological phases.
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu lators have been proposed as a way of realizing topological states that are two or more dimensions lower than the bulk, due to the quantization of bulk quadrupole or octupole moments. However, all these proposals as well as experimental realizations have been restricted to real-space dimensions. Here we construct photonic higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a quadrupole PHOTI supporting topologically protected corner modes in an array of modulated photonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two coupled rings. By changing the phase difference of the modulation between adjacently coupled photonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore, we show that the concept of synthetic dimensions can be exploited to realize even higher-order multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a periodic motion in a lattice when subjected to an external force. Observed in a wide range of synthetic lattice systems, BOs are intrinsically related to the geo metric and topological properties of the underlying band structure. This has established BOs as a prominent tool for the detection of Berry phase effects, including those described by non-Abelian gauge fields. In this work, we unveil a unique topological effect that manifests in the BOs of higher-order topological insulators through the interplay of non-Abelian Berry curvature and quantized Wilson loops. It is characterized by an oscillating Hall drift that is synchronized with a topologically-protected inter-band beating and a multiplied Bloch period. We elucidate that the origin of this synchronization mechanism relies on the periodic quantum dynamics of Wannier centers. Our work paves the way to the experimental detection of non-Abelian topological properties in synthetic matter through the measurement of Berry phases and center-of-mass displacements.
We propose a realistic scheme to construct anomalous Floquet Chern topological insulators using spin-1/2 particles carrying out a discrete-time quantum walk in a two-dimensional lattice. By Floquet engineering the quantum-walk protocol, an Aharonov-B ohm geometric phase is imprinted onto closed-loop paths in the lattice, thus realizing an abelian gauge field---the analog of a magnetic flux threading a two-dimensional electron gas. We show that in the strong field regime, when the flux per plaquette is a sizable fraction of the flux quantum, magnetic quantum walks give rise to nearly flat energy bands featuring nonvanishing Chern numbers. Furthermore, we find that because of the nonperturbative nature of the periodic driving, a second topological number---the so-called RLBL invariant---is necessary to fully characterize the anomalous Floquet topological phases of magnetic quantum walks and to compute the number of topologically protected edge modes expected at the boundaries between different phases. In the second part of this article, we discuss an implementation of this scheme using neutral atoms in two-dimensional spin-dependent optical lattices, which enables the generation of arbitrary magnetic-field landscapes, including those with sharp boundaries. The robust atom transport, which is observed along boundaries separating regions of different field strength, reveals the topological character of the Floquet Chern bands.
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crys talline insulators, obtained as a stack of weakly-coupled two-dimensional layers. The system has tunable and robust surface Dirac cones even though the mirror Chern numbers of the Floquet bulk bands vanish. The number of surface Dirac cones is given by a new topological invariant determined from the scattering matrix of the system. Further, we find that due to particle-hole symmetry, the positions of Dirac cones in the surface Brillouin zone are controlled by an additional invariant, counting the parity of modes present at high symmetry points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا