ﻻ يوجد ملخص باللغة العربية
We show that type-II Weyl point formation in MnBi2-xSbxTe4 is more likely than in MnBi2Te4 when x reaches 0.5, as the alloy case does not suffer from the same degree of lattice parameter sensitivity as in MnBi2Te4. To further substantiate the stability of type-II Weyl points in MnBi2-xSbxTe4, we demonstrate that among the three conditions of establishing a type-II Weyl point, two are robustly satisfied by the zone-folded dispersion of Bi and Te pz orbitals and spin-orbit coupling already available in MnBi2Te4, and that the control over MnBi2-xSbxTe4 alloy composition provides a rational means to satisfy the third condition. The stability of type-II Weyl points in MnBi1.5Sb0.5Te4 is thus intimately associated with orbital interactions, providing a concrete foundation for future efforts in band engineering and the rational design of topological electronic structures.
Here we report the evolution of structural, magnetic and transport properties in MnBi$_{2-x}$Sb$_x$Te$_4$ (0$leq x leq$2) single crystals. MnSb$_2$Te$_4$, isostructural to MnBi$_2$Te$_4$, has the lattice parameters of textit{a}=4.2445(3)$AA$ and text
As one of Weyl semimetals discovered recently, NbP exhibits two groups of Weyl points with one group lying inside the $k_z=0$ plane and the other group staying away from this plane. All Weyl points have been assumed to be type-I, for which the Fermi
Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately
We determine the band structure and spin texture of WTe2 by spin- and angle-resolved photoemission spectroscopy (SARPES). With the support of first-principles calculations, we reveal the existence of spin polarization of both the Fermi arc surface st
The lack of time-reversal symmetry and Weyl fermions give exotic transport properties to Co-based Heusler alloys. In the present study, we have investigated the role of chemical disorder on the variation of Weyl points in Co$_2$Ti$_{1-x}$V$_{x}$Sn ma