ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of chemical disorder in tuning the Weyl points in vanadium doped Co$_2$TiSn

67   0   0.0 ( 0 )
 نشر من قبل Payal Chaudhary
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Payal Chaudhary




اسأل ChatGPT حول البحث

The lack of time-reversal symmetry and Weyl fermions give exotic transport properties to Co-based Heusler alloys. In the present study, we have investigated the role of chemical disorder on the variation of Weyl points in Co$_2$Ti$_{1-x}$V$_{x}$Sn magnetic Weyl semimetal candidate. We employ the first principle approach to track the evolution of the nodal lines responsible for the appearance of Weyl node in Co$_2$TiSn as a function of V substitution in place of Ti. By increasing the V concentration in place of Ti, the nodal line moves toward fermi level and remains at Fermi level around the middle composition. Further increase of the V content, leads shifting of nodal line away from Fermi level. Density of state calculation shows half-metallic behavior for the entire range of composition. The magnetic moment on each Co atom as a function of V concentration increases linearly up to x=0.4, and after that, it starts decreasing. The first-principles calculations reveal that via replacing almost half of the Ti with V, the intrinsic anomalous Hall conductivity increased twice as compared to the undoped composition. Our results indicate that the composition close to the 50% V doped Co$_2$TiSn, will be an ideal composition for the experimental investigation of Weyl physics.



قيم البحث

اقرأ أيضاً

74 - Yuanxi Wang 2021
We show that type-II Weyl point formation in MnBi2-xSbxTe4 is more likely than in MnBi2Te4 when x reaches 0.5, as the alloy case does not suffer from the same degree of lattice parameter sensitivity as in MnBi2Te4. To further substantiate the stabili ty of type-II Weyl points in MnBi2-xSbxTe4, we demonstrate that among the three conditions of establishing a type-II Weyl point, two are robustly satisfied by the zone-folded dispersion of Bi and Te pz orbitals and spin-orbit coupling already available in MnBi2Te4, and that the control over MnBi2-xSbxTe4 alloy composition provides a rational means to satisfy the third condition. The stability of type-II Weyl points in MnBi1.5Sb0.5Te4 is thus intimately associated with orbital interactions, providing a concrete foundation for future efforts in band engineering and the rational design of topological electronic structures.
A tuning of Fermi level (E$_F$) near Weyl points is one of the promising approaches to realize large anomalous Nernst effect (ANE). In this work, we introduce an efficient approach to tune E$_F$ for the Co$_2$MnAl Weyl semimetal through a layer-by-la yer combinatorial deposition of Co$_2$MnAl$_{1-x}$Si$_x$ (CMAS) thin film. A single-crystalline composition-spread film with x varied from 0 to 1 was fabricated. The structural characterization reveals the formation of single-phase CMAS alloy throughout the composition range with a gradual improvement of L2$_1$ order with x similar to the co-sputtered single layered film, which validates the present fabrication technique. Hard X-ray photoemission spectroscopy for the CMAS composition-spread film directly confirmed the rigid band-like E$_F$ shift of approximately 0.40 eV towards the composition gradient direction from x = 0 to 1. The anomalous Ettingshausen effect (AEE), the reciprocal of ANE, has been measured for whole x range using a single strip along the composition gradient using the lock-in thermography technique. The similarity of the x dependence of observed AEE and ANE signals clearly demonstrates that the AEE measurement on the composition spread film is an effective approach to investigate the composition dependence of ANE of Weyl semimetal thin films and realize the highest performance without fabricating several films, which will accelerate the research for ANE-based energy harvesting
We present a DFT study utilizing the Hubbard U correction to probe structural and magnetic disorder in $mathrm{NaO_{2}}$, primary discharge product of Na-O$_2$ batteries. We show that $mathrm{NaO_{2}}$ exhibits a large degree of rotational and magnet ic disorder; a 3-body Ising Model is necessary to capture the subtle interplay of this disorder. MC simulations demonstrate that energetically favorable, FM phases near room temperature consist of alternating bands of orthogonally-oriented $mathrm{O_{2}}$ dimers. We find that bulk structures are insulating, with a subset of FM structures showing a moderate gap ($<2$ eV) in one spin channel.
As one of Weyl semimetals discovered recently, NbP exhibits two groups of Weyl points with one group lying inside the $k_z=0$ plane and the other group staying away from this plane. All Weyl points have been assumed to be type-I, for which the Fermi surface shrinks into a point as the Fermi energy crosses the Weyl point. In this work, we have revealed that the second group of Weyl points are actually type-II, which are found to be touching points between the electron and hole pockets in the Fermi surface. Corresponding Weyl cones are strongly tilted along a line approximately $17^circ$ off the $k_z$ axis in the $k_x - k_z$ (or $k_y - k_z$) plane, violating the Lorentz symmetry but still giving rise to Fermi arcs on the surface. Therefore, NbP exhibits both type-I ($k_z=0$ plane) and type-II ($k_z eq 0$ plane) Weyl points.
Magnetocrystalline anisotropy (MCA) in doped Ce$_{2}$Co$_{17}$ and other competing structures was investigated using density functional theory. We confirmed that the MCA contribution from dumbbell Co sites is very negative. Replacing Co dumbbell atom s with a pair of Fe or Mn atoms greatly enhance the uniaxial anisotropy, which agrees quantitatively with experiment, and this enhancement arises from electronic-structure features near the Fermi level, mostly associated with dumbbell sites. With Co dumbbell atoms replaced by other elements, the variation of anisotropy is generally a collective effect and contributions from other sublattices may change significantly. Moreover, we found that Zr doping promotes the formation of 1-5 structure that exhibits a large uniaxial anisotropy, such that Zr is the most effective element to enhance MCA in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا