ترغب بنشر مسار تعليمي؟ اضغط هنا

DIG: A Turnkey Library for Diving into Graph Deep Learning Research

136   0   0.0 ( 0 )
 نشر من قبل Meng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although there exist several libraries for deep learning on graphs, they are aiming at implementing basic operations for graph deep learning. In the research community, implementing and benchmarking various advanced tasks are still painful and time-consuming with existing libraries. To facilitate graph deep learning research, we introduce DIG: Dive into Graphs, a research-oriented library that integrates unified and extensible implementations of common graph deep learning algorithms for several advanced tasks. Currently, we consider graph generation, self-supervised learning on graphs, explainability of graph neural networks, and deep learning on 3D graphs. For each direction, we provide unified implementations of data interfaces, common algorithms, and evaluation metrics. Altogether, DIG is an extensible, open-source, and turnkey library for researchers to develop new methods and effortlessly compare with common baselines using widely used datasets and evaluation metrics. Source code is available at https://github.com/divelab/DIG.

قيم البحث

اقرأ أيضاً

Recent years have witnessed an upsurge of research interests and applications of machine learning on graphs. Automated machine learning (AutoML) on graphs is on the horizon to automatically design the optimal machine learning algorithm for a given gr aph task. However, none of the existing libraries can fully support AutoML on graphs. To fill this gap, we present Automated Graph Learning (AutoGL), the first library for automated machine learning on graphs. AutoGL is open-source, easy to use, and flexible to be extended. Specifically, we propose an automated machine learning pipeline for graph data containing four modules: auto feature engineering, model training, hyper-parameter optimization, and auto ensemble. For each module, we provide numerous state-of-the-art methods and flexible base classes and APIs, which allow easy customization. We further provide experimental results to showcase the usage of our AutoGL library.
Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging . In this work, we introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison. FedML supports three computing paradigms: on-device training for edge devices, distributed computing, and single-machine simulation. FedML also promotes diverse algorithmic research with flexible and generic API design and comprehensive reference baseline implementations (optimizer, models, and datasets). We hope FedML could provide an efficient and reproducible means for developing and evaluating FL algorithms that would benefit the FL research community. We maintain the source code, documents, and user community at https://fedml.ai.
We present Kaolin, a PyTorch library aiming to accelerate 3D deep learning research. Kaolin provides efficient implementations of differentiable 3D modules for use in deep learning systems. With functionality to load and preprocess several popular 3D datasets, and native functions to manipulate meshes, pointclouds, signed distance functions, and voxel grids, Kaolin mitigates the need to write wasteful boilerplate code. Kaolin packages together several differentiable graphics modules including rendering, lighting, shading, and view warping. Kaolin also supports an array of loss functions and evaluation metrics for seamless evaluation and provides visualization functionality to render the 3D results. Importantly, we curate a comprehensive model zoo comprising many state-of-the-art 3D deep learning architectures, to serve as a starting point for future research endeavours. Kaolin is available as open-source software at https://github.com/NVIDIAGameWorks/kaolin/.
373 - Lu Lu , Xuhui Meng , Zhiping Mao 2019
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
Artificial Intelligence (AI) has rapidly emerged as a key disruptive technology in the 21st century. At the heart of modern AI lies Deep Learning (DL), an emerging class of algorithms that has enabled todays platforms and organizations to operate at unprecedented efficiency, effectiveness, and scale. Despite significant interest, IS contributions in DL have been limited, which we argue is in part due to issues with defining, positioning, and conducting DL research. Recognizing the tremendous opportunity here for the IS community, this work clarifies, streamlines, and presents approaches for IS scholars to make timely and high-impact contributions. Related to this broader goal, this paper makes five timely contributions. First, we systematically summarize the major components of DL in a novel Deep Learning for Information Systems Research (DL-ISR) schematic that illustrates how technical DL processes are driven by key factors from an application environment. Second, we present a novel Knowledge Contribution Framework (KCF) to help IS scholars position their DL contributions for maximum impact. Third, we provide ten guidelines to help IS scholars generate rigorous and relevant DL-ISR in a systematic, high-quality fashion. Fourth, we present a review of prevailing journal and conference venues to examine how IS scholars have leveraged DL for various research inquiries. Finally, we provide a unique perspective on how IS scholars can formulate DL-ISR inquiries by carefully considering the interplay of business function(s), application areas(s), and the KCF. This perspective intentionally emphasizes inter-disciplinary, intra-disciplinary, and cross-IS tradition perspectives. Taken together, these contributions provide IS scholars a timely framework to advance the scale, scope, and impact of deep learning research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا