ترغب بنشر مسار تعليمي؟ اضغط هنا

RPATTACK: Refined Patch Attack on General Object Detectors

257   0   0.0 ( 0 )
 نشر من قبل Hao Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays, general object detectors like YOLO and Faster R-CNN as well as their variants are widely exploited in many applications. Many works have revealed that these detectors are extremely vulnerable to adversarial patch attacks. The perturbed regions generated by previous patch-based attack works on object detectors are very large which are not necessary for attacking and perceptible for human eyes. To generate much less but more efficient perturbation, we propose a novel patch-based method for attacking general object detectors. Firstly, we propose a patch selection and refining scheme to find the pixels which have the greatest importance for attack and remove the inconsequential perturbations gradually. Then, for a stable ensemble attack, we balance the gradients of detectors to avoid over-optimizing one of them during the training phase. Our RPAttack can achieve an amazing missed detection rate of 100% for both Yolo v4 and Faster R-CNN while only modifies 0.32% pixels on VOC 2007 test set. Our code is available at https://github.com/VDIGPKU/RPAttack.



قيم البحث

اقرأ أيضاً

Deep neural networks have been widely used in many computer vision tasks. However, it is proved that they are susceptible to small, imperceptible perturbations added to the input. Inputs with elaborately designed perturbations that can fool deep lear ning models are called adversarial examples, and they have drawn great concerns about the safety of deep neural networks. Object detection algorithms are designed to locate and classify objects in images or videos and they are the core of many computer vision tasks, which have great research value and wide applications. In this paper, we focus on adversarial attack on some state-of-the-art object detection models. As a practical alternative, we use adversarial patches for the attack. Two adversarial patch generation algorithms have been proposed: the heatmap-based algorithm and the consensus-based algorithm. The experiment results have shown that the proposed methods are highly effective, transferable and generic. Additionally, we have applied the proposed methods to competition Adversarial Challenge on Object Detection that is organized by Alibaba on the Tianchi platform and won top 7 in 1701 teams. Code is available at: https://github.com/FenHua/DetDak
Perturbation-based attacks, while not physically realizable, have been the main emphasis of adversarial machine learning (ML) research. Patch-based attacks by contrast are physically realizable, yet most work has focused on 2D domain with recent fora ys into 3D. Characterizing the robustness properties of patch attacks and their invariance to 3D pose is important, yet not fully elucidated, and is the focus of this paper. To this end, several contributions are made here: A) we develop a new metric called mean Attack Success over Transformations (mAST) to evaluate patch attack robustness and invariance; and B), we systematically assess robustness of patch attacks to 3D position and orientation for various conditions; in particular, we conduct a sensitivity analysis which provides important qualitative insights into attack effectiveness as a function of the 3D pose of a patch relative to the camera (rotation, translation) and sets forth some properties for patch attack 3D invariance; and C), we draw novel qualitative conclusions including: 1) we demonstrate that for some 3D transformations, namely rotation and loom, increasing the training distribution support yields an increase in patch success over the full range at test time. 2) We provide new insights into the existence of a fundamental cutoff limit in patch attack effectiveness that depends on the extent of out-of-plane rotation angles. These findings should collectively guide future design of 3D patch attacks and defenses.
This paper focuses on high-transferable adversarial attacks on detectors, which are hard to attack in a black-box manner, because of their multiple-output characteristics and the diversity across architectures. To pursue a high attack transferability , one plausible way is to find a common property across detectors, which facilitates the discovery of common weaknesses. We are the first to suggest that the relevance map from interpreters for detectors is such a property. Based on it, we design a Relevance Attack on Detectors (RAD), which achieves a state-of-the-art transferability, exceeding existing results by above 20%. On MS COCO, the detection mAPs for all 8 black-box architectures are more than halved and the segmentation mAPs are also significantly influenced. Given the great transferability of RAD, we generate the first adversarial dataset for object detection and instance segmentation, i.e., Adversarial Objects in COntext (AOCO), which helps to quickly evaluate and improve the robustness of detectors.
117 - Quanyu Liao , Xin Wang , Bin Kong 2020
The deep neural network is vulnerable to adversarial examples. Adding imperceptible adversarial perturbations to images is enough to make them fail. Most existing research focuses on attacking image classifiers or anchor-based object detectors, but t hey generate globally perturbation on the whole image, which is unnecessary. In our work, we leverage higher-level semantic information to generate high aggressive local perturbations for anchor-free object detectors. As a result, it is less computationally intensive and achieves a higher black-box attack as well as transferring attack performance. The adversarial examples generated by our method are not only capable of attacking anchor-free object detectors, but also able to be transferred to attack anchor-based object detector.
Knowledge distillation constitutes a simple yet effective way to improve the performance of a compact student network by exploiting the knowledge of a more powerful teacher. Nevertheless, the knowledge distillation literature remains limited to the s cenario where the student and the teacher tackle the same task. Here, we investigate the problem of transferring knowledge not only across architectures but also across tasks. To this end, we study the case of object detection and, instead of following the standard detector-to-detector distillation approach, introduce a classifier-to-detector knowledge transfer framework. In particular, we propose strategies to exploit the classification teacher to improve both the detectors recognition accuracy and localization performance. Our experiments on several detectors with different backbones demonstrate the effectiveness of our approach, allowing us to outperform the state-of-the-art detector-to-detector distillation methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا