ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure, temperature, and orientation dependent thermal conductivity of $alpha$-1,3,5-trinitro-1,3,5-triazinane ($alpha$-RDX)

108   0   0.0 ( 0 )
 نشر من قبل Romain Perriot
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use reverse non-equilibrium molecular dynamics (RNEMD) simulations to determine the thermal conductivity in $alpha$-RDX in the <100>, <010>, and <001> crystallographic directions. Simulations are carried out with the Smith-Bharadwaj non-reactive empirical interatomic potential [Smith & Bharadwaj, J. Phys. Chem. B 103, 3570(1999)], which represents the thermo-elastic properties of RDX with good accuracy. As an illustration, we report the temperature and pressure dependence of lattice constants of $alpha$-RDX, which compare well with experimental and ab initio results, as do linear and volume thermal expansion coefficients, which we also calculate. We find that the thermal conductivity depends linearly on the inverse temperature in the 200-400K regime due to the decrease in the phonon mean free path. The thermal conductivity also exhibits anisotropy, with a maximum difference at 300K of 24% between the <001> and <010> directions, an effect that remains when temperature increases. Thermal conductivity in the <100> direction is mostly between the two other directions, although crossovers are predicted with <001> at high temperature, and <010> at low temperature under pressure. We observe that the thermal conductivity varies linearly with pressure up to 4 GPa. The data are fitted to analytical functions for interpolation/extrapolation and use in continuum simulations. MD results are validated against experiments using impulsive stimulated thermal scattering (ISTS) on RDX single crystals at 293K and ambient pressure, showing good qualitative and quantitative agreement: same ordering between the three principal orientations, and an average error of 10% between the experiments and the model. These results provide confidence that the extracted analytical functions using the RNEMD methodology and the Smith-Bharadwaj potential can be applied to model the thermal conductivity of $alpha$-RDX.



قيم البحث

اقرأ أيضاً

The heat transfer properties of the organic molecular crystal ${alpha}$-RDX were studied using three phonon-based thermal conductivity models. It was found that the widely used Peierls-Boltzmann model for thermal transport in crystalline materials br eaks down for ${alpha}$-RDX. We show this breakdown is due to a large degree of anharmonicity that leads to a dominance of diffusive-like carriers. Despite being developed for disordered systems, the Allen-Feldman theory for thermal conductivity actually gives the best description of thermal transport. This is likely because diffusive carriers contribute to over 95% of the thermal conductivity in ${alpha}$-RDX. The dominance of diffusive carriers is larger than previously observed in other fully ordered crystalline systems. These results indicate than van-der Waals bonded organic crystalline solids conduct heat in a manner more akin to amorphous materials than simple atomic crystals.
Low thermal conductivity is favorable for preserving the temperature gradient between the two ends of a thermoelectric material in order to ensure continuous electron current generation. In high-performance thermoelectric materials, there are two mai n low thermal conductivity mechanisms: the phonon anharmonic in PbTe and SnSe and phonon scattering resulting from the dynamic disorder in AgCrSe2 and CuCrSe2, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in {alpha}-MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the compounds intrinsic distorted rocksalt sublattice, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in {alpha}-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.
Electrical resistivity and ac-susceptibility measurements under high pressure were carried out in high-quality single crystals of $alpha$-Mn. The pressure-temperature phase diagram consists of an antiferromagnetic ordered phase (0<$P$<1.4 GPa, $T<T_{ rm N}$), a pressure-induced ordered phase (1.4<$P$<4.2-4.4 GPa, $T<T_{rm A}$), and a paramagnetic phase. A significant increase was observed in the temperature dependence of ac-susceptibility at $T_{rm A}$, indicating that the pressure-induced ordered phase has a spontaneous magnetic moment. Ferrimagnetic order and parasitic ferromagnetism are proposed as candidates for a possible magnetic structure. At the critical pressure, where the pressure-induced ordered phase disappears, the temperature dependence of the resistivity below 10 K is proportional to $T^{5/3}$. This non-Fermi liquid behavior suggests the presence of pronounced magnetic fluctuation.
100 - L.-H Liang , Baowen Li 2006
We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical formula including the surface scattering and the size confinement effects of phonon transport is derived. The theoretical formula gives good agree ments with the existing experimental data for Si and GaAs nanowires and thin films.
We provide a complete quantitative explanation for the anisotropic thermal expansion of hcp Ti at low temperature. The observed negative thermal expansion along the c-axis is reproduced theoretically by means of a parameter free theory which involves both the electron and phonon contributions to the free energy. The thermal expansion of titanium is calculated and found to be negative along the c-axis for temperatures below $sim$ 170 K, in good agreement with observations. We have identified a saddle-point Van Hove singularity near the Fermi level as the main reason for the anisotropic thermal expansion in $alpha-$titanium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا