ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous thermal expansion in $alpha$-titanium

201   0   0.0 ( 0 )
 نشر من قبل Petros Souvatzis Dr
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a complete quantitative explanation for the anisotropic thermal expansion of hcp Ti at low temperature. The observed negative thermal expansion along the c-axis is reproduced theoretically by means of a parameter free theory which involves both the electron and phonon contributions to the free energy. The thermal expansion of titanium is calculated and found to be negative along the c-axis for temperatures below $sim$ 170 K, in good agreement with observations. We have identified a saddle-point Van Hove singularity near the Fermi level as the main reason for the anisotropic thermal expansion in $alpha-$titanium.



قيم البحث

اقرأ أيضاً

Motivated by efforts to create thin nanoscale metamaterials and understand atomically thin binary monolayers, we study the finite temperature statistical mechanics of arrays of bistable buckled dilations embedded in free-standing two-dimensional crys talline membranes that are allowed to fluctuate in three dimensions. The buckled nodes behave like discrete, but highly compressible, Ising spins, leading to a phase transition at $T_c$ with singularities in the staggered magnetization, susceptibility, and specific heat, studied via molecular dynamics simulations. Unlike conventional Ising models, we observe a striking divergence and sign change of the coefficient of thermal expansion near $T_c$ caused by the coupling of flexural phonons to the buckled spin texture. We argue that a phenomenological model coupling Ising degrees of freedom to the flexural phonons in a thin elastic sheet can explain this unusual response.
We have investigated the anisotropic thermal expansion of graphite using ab-initio calculation of lattice dynamics and anharmonicity of the phonons, which reveal that the negative thermal expansion (NTE) in the a-b plane below 600 K and very large po sitive thermal expansion along the c-axis up to high temperatures arise due to various phonons polarized along the c-axis. While the NTE arises from the anharmonicity of transverse phonons over a broad energy range up to 60 meV, the large positive expansion along the c-axis occurs largely due to the longitudinal optic phonon modes around 16 meV and a large linear compressibility along the c-axis. The hugely anisotropic bonding in graphite is found to be responsible for wide difference in the energy range of the transverse and longitudinal phonon modes polarized along the c-axis, which are responsible for the anomalous thermal expansion behavior. This behaviour is in contrast to other nearly isotropic hexagonal structures like water-ice, which show anomalous thermal expansion in a small temperature range arising from a narrow energy range of phonons.
The compositional dependence of thermal expansion behaviour in 19 different perovskite-like metal-organic frameworks (MOFs) of composition [AI][MII(HCOO)3] (A = alkylammonium cation; M = octahedrally-coordinated divalent metal) is studied using varia ble-temperature X-ray powder diffraction measurements. While all systems show essentially the same type of thermomechanical response-irrespective of their particular structural details-the magnitude of this response is shown to be a function of AI and MII cation radii, as well as the molecular anisotropy of AI. Flexibility is maximised for large MII and small AI, while the shape of AI has implications for the direction of framework hingeing.
Generally, lattice distortions play a key role in determining the ground states of materials. Although it is well known that trigonal distortions are generic to most two-dimensional transition metal dichalcogenides, the impact of this structural dist ortion on the electronic structure has not been understood conclusively. Here, by using a combination of polarization dependent X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and atomic multiplet cluster calculations, we have investigated the electronic structure of titanium dichalcogenides TiX2 (X=S, Se, Te), where the magnitude of the trigonal distortion increase monotonically from S to Se and Te. Our results reveal the presence of an anomalous and large crystal filed splitting. This unusual kind of crystal field splitting is likely responsible for the unconventional electronic structure of TiX2 compounds. Our results also indicate the drawback of the distorted crystal field picture in explaining the observed electronic ground state of these materials and emphasize the key importance of metal-ligand hybridization and electronic correlation in defining the electronic structures near Fermi energy.
The alpha/beta interface in Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) is investigated via centre of symmetry analysis, both as-grown and after 10% cold work. Semi-coherent interface steps are observed at a spacing of 4.5 +/-1.13 atoms in the as-grown condition, i n good agreement with theory prediction (4.37 atoms). Lattice accommodation is observed, with elongation along [-1 2 -1 0]alpha and contraction along [1 0 -1 0]alpha . Deformed alpha exhibited larger, less coherent steps with slip bands lying in {110}beta. This indicates dislocation pile-up at the grain boundary, a precursor to globularisation, offering insight into the effect of deformation processing on the interface, which is important for titanium alloy processing route design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا