ترغب بنشر مسار تعليمي؟ اضغط هنا

A RNNs-based Algorithm for Decentralized-partial-consensus Constrained Optimization

71   0   0.0 ( 0 )
 نشر من قبل Zicong Xia
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This technical note proposes the decentralized-partial-consensus optimization with inequality constraints, and a continuous-time algorithm based on multiple interconnected recurrent neural networks (RNNs) is derived to solve the obtained optimization problems. First, the partial-consensus matrix originating from Laplacian matrix is constructed to tackle the partial-consensus constraints. In addition, using the non-smooth analysis and Lyapunov-based technique, the convergence property about the designed algorithm is further guaranteed. Finally, the effectiveness of the obtained results is shown while several examples are presented.



قيم البحث

اقرأ أيضاً

In decentralized optimization, multiple nodes in a network collaborate to minimize the sum of their local loss functions. The information exchange between nodes required for this task, is often limited by network connectivity. We consider a setting i n which communication between nodes is hindered by both (i) a finite rate-constraint on the signal transmitted by any node, and (ii) additive noise corrupting the signal received by any node. We propose a novel algorithm for this scenario: Decentralized Lazy Mirror Descent with Differential Exchanges (DLMD-DiffEx), which guarantees convergence of the local estimates to the optimal solution under the given communication constraints. A salient feature of DLMD-DiffEx is the introduction of additional proxy variables that are maintained by the nodes to account for the disagreement in their estimates due to channel noise and rate-constraints. Convergence to the optimal solution is attained by having nodes iteratively exchange these disagreement terms until consensus is achieved. In order to prevent noise accumulation during this exchange, DLMD-DiffEx relies on two sequences; one controlling the power of the transmitted signal, and the other determining the consensus rate. We provide clear insights on the design of these two sequences which highlights the interplay between consensus rate and noise amplification. We investigate the performance of DLMD-DiffEx both from a theoretical perspective as well as through numerical evaluations.
In this work, we introduce ADAPD, $textbf{A}$ $textbf{D}$ecentr$textbf{A}$lized $textbf{P}$rimal-$textbf{D}$ual algorithmic framework for solving non-convex and smooth consensus optimization problems over a network of distributed agents. ADAPD makes use of an inexact ADMM-type update. During each iteration, each agent first inexactly solves a local strongly convex subproblem and then performs a neighbor communication while updating a set of dual variables. Two variations to ADAPD are presented. The variants allow agents to balance the communication and computation workload while they collaboratively solve the consensus optimization problem. The optimal convergence rate for non-convex and smooth consensus optimization problems is established; namely, ADAPD achieves $varepsilon$-stationarity in $mathcal{O}(varepsilon^{-1})$ iterations. Numerical experiments demonstrate the superiority of ADAPD over several existing decentralized methods.
173 - Benjamin Sirb , Xiaojing Ye 2016
We analyze the convergence of decentralized consensus algorithm with delayed gradient information across the network. The nodes in the network privately hold parts of the objective function and collaboratively solve for the consensus optimal solution of the total objective while they can only communicate with their immediate neighbors. In real-world networks, it is often difficult and sometimes impossible to synchronize the nodes, and therefore they have to use stale gradient information during computations. We show that, as long as the random delays are bounded in expectation and a proper diminishing step size policy is employed, the iterates generated by decentralized gradient descent method converge to a consensual optimal solution. Convergence rates of both objective and consensus are derived. Numerical results on a number of synthetic problems and real-world seismic tomography datasets in decentralized sensor networks are presented to show the performance of the method.
Decentralized optimization is a powerful paradigm that finds applications in engineering and learning design. This work studies decentralized composite optimization problems with non-smooth regularization terms. Most existing gradient-based proximal decentralized methods are known to converge to the optimal solution with sublinear rates, and it remains unclear whether this family of methods can achieve global linear convergence. To tackle this problem, this work assumes the non-smooth regularization term is common across all networked agents, which is the case for many machine learning problems. Under this condition, we design a proximal gradient decentralized algorithm whose fixed point coincides with the desired minimizer. We then provide a concise proof that establishes its linear convergence. In the absence of the non-smooth term, our analysis technique covers the well known EXTRA algorithm and provides useful bounds on the convergence rate and step-size.
138 - Xianghui Mao , Kun Yuan , Yubin Hu 2018
This paper addresses consensus optimization problems in a multi-agent network, where all agents collaboratively find a minimizer for the sum of their private functions. We develop a new decentralized algorithm in which each agent communicates only wi th its neighbors. State-of-the-art decentralized algorithms use communications between either all pairs of adjacent agents or a random subset of them at each iteration. Another class of algorithms uses a random walk incremental strategy, which sequentially activates a succession of nodes; these incremental algorithms require diminishing step sizes to converge to the solution, so their convergence is relatively slow. In this work, we propose a random walk algorithm that uses a fixed step size and converges faster than the existing random walk incremental algorithms. Our algorithm is also communication efficient. Each iteration uses only one link to communicate the latest information for an agent to another. Since this communication rule mimics a man walking around the network, we call our new algorithm Walkman. We establish convergence for convex and nonconvex objectives. For decentralized least squares, we derive a linear rate of convergence and obtain a better communication complexity than those of other decentralized algorithms. Numerical experiments verify our analysis results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا