ﻻ يوجد ملخص باللغة العربية
We analyze the convergence of decentralized consensus algorithm with delayed gradient information across the network. The nodes in the network privately hold parts of the objective function and collaboratively solve for the consensus optimal solution of the total objective while they can only communicate with their immediate neighbors. In real-world networks, it is often difficult and sometimes impossible to synchronize the nodes, and therefore they have to use stale gradient information during computations. We show that, as long as the random delays are bounded in expectation and a proper diminishing step size policy is employed, the iterates generated by decentralized gradient descent method converge to a consensual optimal solution. Convergence rates of both objective and consensus are derived. Numerical results on a number of synthetic problems and real-world seismic tomography datasets in decentralized sensor networks are presented to show the performance of the method.
This technical note proposes the decentralized-partial-consensus optimization with inequality constraints, and a continuous-time algorithm based on multiple interconnected recurrent neural networks (RNNs) is derived to solve the obtained optimization
This paper develops algorithms for decentralized machine learning over a network, where data are distributed, computation is localized, and communication is restricted between neighbors. A line of recent research in this area focuses on improving bot
Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs. However, little exploration has
In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where the cost of communication and/or computation can be expensive. We extend and generalize the analysis for a class of nested gradient-based
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new