ﻻ يوجد ملخص باللغة العربية
In this paper, we present an active visual SLAM approach for omnidirectional robots. The goal is to generate control commands that allow such a robot to simultaneously localize itself and map an unknown environment while maximizing the amount of information gained and consume as low energy as possible. Leveraging the robots independent translation and rotation control, we introduce a multi-layered approach for active V-SLAM. The top layer decides on informative goal locations and generates highly informative paths to them. The second and third layers actively re-plan and execute the path, exploiting the continuously updated map and local features information. Moreover, we introduce two utility formulations to account for the obstacle presence in the field of view and the robots location. Through rigorous simulations, real robot experiments and comparisons with the state-of-the-art methods, we demonstrate that our approach achieves similar coverage results with lesser overall map entropy. This is obtained while keeping the traversed distance up to 39% shorter than the other methods and without increasing the wheels total rotation amount. Code and implementation details are provided as opensource.
We present an active visual search model for finding objects in unknown environments. The proposed algorithm guides the robot towards the sought object using the relevant stimuli provided by the visual sensors. Existing search strategies are either p
In active Visual-SLAM (V-SLAM), a robot relies on the information retrieved by its cameras to control its own movements for autonomous mapping of the environment. Cameras are usually statically linked to the robots body, limiting the extra degrees of
Recently, the philosophy of visual saliency and attention has started to gain popularity in the robotics community. Therefore, this paper aims to mimic this mechanism in SLAM framework by using saliency prediction model. Comparing with traditional SL
Monocular cameras coupled with inertial measurements generally give high performance visual inertial odometry. However, drift can be significant with long trajectories, especially when the environment is visually challenging. In this paper, we propos
Visual-inertial SLAM (VI-SLAM) requires a good initial estimation of the initial velocity, orientation with respect to gravity and gyroscope and accelerometer biases. In this paper we build on the initialization method proposed by Martinelli and exte