ترغب بنشر مسار تعليمي؟ اضغط هنا

Attention-based Active Visual Search for Mobile Robots

117   0   0.0 ( 0 )
 نشر من قبل Amir Rasouli
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an active visual search model for finding objects in unknown environments. The proposed algorithm guides the robot towards the sought object using the relevant stimuli provided by the visual sensors. Existing search strategies are either purely reactive or use simplified sensor models that do not exploit all the visual information available. In this paper, we propose a new model that actively extracts visual information via visual attention techniques and, in conjunction with a non-myopic decision-making algorithm, leads the robot to search more relevant areas of the environment. The attention module couples both top-down and bottom-up attention models enabling the robot to search regions with higher importance first. The proposed algorithm is evaluated on a mobile robot platform in a 3D simulated environment. The results indicate that the use of visual attention significantly improves search, but the degree of improvement depends on the nature of the task and the complexity of the environment. In our experiments, we found that performance enhancements of up to 42% in structured and 38% in highly unstructured cluttered environments can be achieved using visual attention mechanisms.

قيم البحث

اقرأ أيضاً

In this paper, we present an active visual SLAM approach for omnidirectional robots. The goal is to generate control commands that allow such a robot to simultaneously localize itself and map an unknown environment while maximizing the amount of info rmation gained and consume as low energy as possible. Leveraging the robots independent translation and rotation control, we introduce a multi-layered approach for active V-SLAM. The top layer decides on informative goal locations and generates highly informative paths to them. The second and third layers actively re-plan and execute the path, exploiting the continuously updated map and local features information. Moreover, we introduce two utility formulations to account for the obstacle presence in the field of view and the robots location. Through rigorous simulations, real robot experiments and comparisons with the state-of-the-art methods, we demonstrate that our approach achieves similar coverage results with lesser overall map entropy. This is obtained while keeping the traversed distance up to 39% shorter than the other methods and without increasing the wheels total rotation amount. Code and implementation details are provided as opensource.
Person detection is a crucial task for mobile robots navigating in human-populated environments and LiDAR sensors are promising for this task, given their accurate depth measurements and large field of view. This paper studies existing LiDAR-based pe rson detectors with a particular focus on mobile robot scenarios (e.g. service robot or social robot), where persons are observed more frequently and in much closer ranges, compared to the driving scenarios. We conduct a series of experiments, using the recently released JackRabbot dataset and the state-of-the-art detectors based on 3D or 2D LiDAR sensors (CenterPoint and DR-SPAAM respectively). These experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors. For the domain gap, we aim to understand if detectors pretrained on driving datasets can achieve good performance on the mobile robot scenarios, for which there are currently no trained models readily available. For the modality gap, we compare detectors that use 3D or 2D LiDAR, from various aspects, including performance, runtime, localization accuracy, robustness to range and crowdedness. The results from our experiments provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
Applications of safety, security, and rescue in robotics, such as multi-robot target tracking, involve the execution of information acquisition tasks by teams of mobile robots. However, in failure-prone or adversarial environments, robots get attacke d, their communication channels get jammed, and their sensors may fail, resulting in the withdrawal of robots from the collective task, and consequently the inability of the remaining active robots to coordinate with each other. As a result, traditional design paradigms become insufficient and, in contrast, resilient designs against system-wide failures and attacks become important. In general, resilient design problems are hard, and even though they often involve objective functions that are monotone or submodular, scalable approximation algorithms for their solution have been hitherto unknown. In this paper, we provide the first algorithm, enabling the following capabilities: minimal communication, i.e., the algorithm is executed by the robots based only on minimal communication between them; system-wide resiliency, i.e., the algorithm is valid for any number of denial-of-service attacks and failures; and provable approximation performance, i.e., the algorithm ensures for all monotone (and not necessarily submodular) objective functions a solution that is finitely close to the optimal. We quantify our algorithms approximation performance using a notion of curvature for monotone set functions. We support our theoretical analyses with simulated and real-world experiments, by considering an active information gathering scenario, namely, multi-robot target tracking.
Vision-based reinforcement learning (RL) is successful, but how to generalize it to unknown test environments remains challenging. Existing methods focus on training an RL policy that is universal to changing visual domains, whereas we focus on extra cting visual foreground that is universal, feeding clean invariant vision to the RL policy learner. Our method is completely unsupervised, without manual annotations or access to environment internals. Given videos of actions in a training environment, we learn how to extract foregrounds with unsupervised keypoint detection, followed by unsupervised visual attention to automatically generate a foreground mask per video frame. We can then introduce artificial distractors and train a model to reconstruct the clean foreground mask from noisy observations. Only this learned model is needed during test to provide distraction-free visual input to the RL policy learner. Our Visual Attention and Invariance (VAI) method significantly outperforms the state-of-the-art on visual domain generalization, gaining 15 to 49% (61 to 229%) more cumulative rewards per episode on DeepMind Control (our DrawerWorld Manipulation) benchmarks. Our results demonstrate that it is not only possible to learn domain-invariant vision without any supervision, but freeing RL from visual distractions also makes the policy more focused and thus far better.
In this paper we focus on the problem of learning online an optimal policy for Active Visual Search (AVS) of objects in unknown indoor environments. We propose POMP++, a planning strategy that introduces a novel formulation on top of the classic Part ially Observable Monte Carlo Planning (POMCP) framework, to allow training-free online policy learning in unknown environments. We present a new belief reinvigoration strategy which allows to use POMCP with a dynamically growing state space to address the online generation of the floor map. We evaluate our method on two public benchmark datasets, AVD that is acquired by real robotic platforms and Habitat ObjectNav that is rendered from real 3D scene scans, achieving the best success rate with an improvement of >10% over the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا