ﻻ يوجد ملخص باللغة العربية
Source code summarization of a subroutine is the task of writing a short, natural language description of that subroutine. The description usually serves in documentation aimed at programmers, where even brief phrase (e.g. compresses data to a zip file) can help readers rapidly comprehend what a subroutine does without resorting to reading the code itself. Techniques based on neural networks (and encoder-decoder model designs in particular) have established themselves as the state-of-the-art. Yet a problem widely recognized with these models is that they assume the information needed to create a summary is present within the code being summarized itself - an assumption which is at odds with program comprehension literature. Thus a current research frontier lies in the question of encoding source code context into neural models of summarization. In this paper, we present a project-level encoder to improve models of code summarization. By project-level, we mean that we create a vectorized representation of selected code files in a software project, and use that representation to augment the encoder of state-of-the-art neural code summarization techniques. We demonstrate how our encoder improves several existing models, and provide guidelines for maximizing improvement while controlling time and resource costs in model size.
A question answering (QA) system is a type of conversational AI that generates natural language answers to questions posed by human users. QA systems often form the backbone of interactive dialogue systems, and have been studied extensively for a wid
Source code summaries are important for the comprehension and maintenance of programs. However, there are plenty of programs with missing, outdated, or mismatched summaries. Recently, deep learning techniques have been exploited to automatically gene
Source code summaries are short natural language descriptions of code snippets that help developers better understand and maintain source code. There has been a surge of work on automatic code summarization to reduce the burden of writing summaries m
Source code summarization aims at generating concise descriptions of given programs functionalities. While Transformer-based approaches achieve promising performance, they do not explicitly incorporate the code structure information which is importan
In recent years, Neural Machine Translator (NMT) has shown promise in automatically editing source code. Typical NMT based code editor only considers the code that needs to be changed as input and suggests developers with a ranked list of patched cod