ﻻ يوجد ملخص باللغة العربية
The S-matrix bootstrap maps out the space of S-matrices allowed by analyticity, crossing, unitarity, and other constraints. For the $2rightarrow 2$ scattering matrix $S_{2rightarrow 2}$ such space is an infinite dimensional convex space whose boundary can be determined by maximizing linear functionals. On the boundary interesting theories can be found, many times at vertices of the space. Here we consider $3+1$ dimensional theories and focus on the equivalent dual convex minimization problem that provides strict upper bounds for the regularized primal problem and has interesting practical and physical advantages over the primal problem. Its variables are dual partial waves $k_ell(s)$ that are free variables, namely they do not have to obey any crossing, unitarity or other constraints. Nevertheless they are directly related to the partial waves $f_ell(s)$, for which all crossing, unitarity and symmetry properties result from the minimization. Numerically, it requires only a few dual partial waves, much as one wants to possibly match experimental results. We consider the case of scalar fields which is related to pion physics.
Using duality in optimization theory we formulate a dual approach to the S-matrix bootstrap that provides rigorous bounds to 2D QFT observables as a consequence of unitarity, crossing symmetry and analyticity of the scattering matrix. We then explain
We consider the 2D S-matrix bootstrap in the presence of supersymmetry, $mathbb{Z}_2$ and $mathbb{Z}_4$ symmetry. At the boundary of the allowed S-matrix space we encounter well known integrable models such as the supersymmetric sine-Gordon and restr
We review unitarity and crossing constraints on scattering amplitudes for particles with spin in four dimensional quantum field theories. As an application we study two to two scattering of neutral spin 1/2 fermions in detail. Assuming Mandelstam ana
We bootstrap the S-matrix of massless particles in unitary, relativistic two dimensional quantum field theories. We find that the low energy expansion of such S-matrices is strongly constrained by the existence of a UV completion. In the context of f
We propose a strategy to study massive Quantum Field Theory (QFT) using conformal bootstrap methods. The idea is to consider QFT in hyperbolic space and study correlation functions of its boundary operators. We show that these are solutions of the cr