ﻻ يوجد ملخص باللغة العربية
We review unitarity and crossing constraints on scattering amplitudes for particles with spin in four dimensional quantum field theories. As an application we study two to two scattering of neutral spin 1/2 fermions in detail. Assuming Mandelstam analyticity of its scattering amplitude, we use the numerical S-matrix bootstrap method to estimate various non-perturbative bounds on quartic and cubic (Yukawa) couplings.
We bootstrap the S-matrix of massless particles in unitary, relativistic two dimensional quantum field theories. We find that the low energy expansion of such S-matrices is strongly constrained by the existence of a UV completion. In the context of f
We consider the 2D S-matrix bootstrap in the presence of supersymmetry, $mathbb{Z}_2$ and $mathbb{Z}_4$ symmetry. At the boundary of the allowed S-matrix space we encounter well known integrable models such as the supersymmetric sine-Gordon and restr
We propose a strategy to study massive Quantum Field Theory (QFT) using conformal bootstrap methods. The idea is to consider QFT in hyperbolic space and study correlation functions of its boundary operators. We show that these are solutions of the cr
We explore the space of consistent three-particle couplings in $mathbb Z_2$-symmetric two-dimensional QFTs using two first-principles approaches. Our first approach relies solely on unitarity, analyticity and crossing symmetry of the two-to-two scatt
Using duality in optimization theory we formulate a dual approach to the S-matrix bootstrap that provides rigorous bounds to 2D QFT observables as a consequence of unitarity, crossing symmetry and analyticity of the scattering matrix. We then explain