ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural block driven - enhanced convolutional neural representation for relation extraction

80   0   0.0 ( 0 )
 نشر من قبل Dongsheng Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel lightweight relation extraction approach of structural block driven - convolutional neural learning. Specifically, we detect the essential sequential tokens associated with entities through dependency analysis, named as a structural block, and only encode the block on a block-wise and an inter-block-wise representation, utilizing multi-scale CNNs. This is to 1) eliminate the noisy from irrelevant part of a sentence; meanwhile 2) enhance the relevant block representation with both block-wise and inter-block-wise semantically enriched representation. Our method has the advantage of being independent of long sentence context since we only encode the sequential tokens within a block boundary. Experiments on two datasets i.e., SemEval2010 and KBP37, demonstrate the significant advantages of our method. In particular, we achieve the new state-of-the-art performance on the KBP37 dataset; and comparable performance with the state-of-the-art on the SemEval2010 dataset.

قيم البحث

اقرأ أيضاً

102 - Ning Ding , Xiaobin Wang , Yao Fu 2021
Recognizing relations between entities is a pivotal task of relational learning. Learning relation representations from distantly-labeled datasets is difficult because of the abundant label noise and complicated expressions in human language. This pa per aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data that are effective in different settings, including supervised, distantly supervised, and few-shot learning. Instead of solely relying on the supervision from noisy labels, we propose to learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations. Prototypes are representations in the feature space abstracting the essential semantics of relations between entities in sentences. We learn prototypes based on objectives with clear geometric interpretation, where the prototypes are unit vectors uniformly dispersed in a unit ball, and statement embeddings are centered at the end of their corresponding prototype vectors on the surface of the ball. This approach allows us to learn meaningful, interpretable prototypes for the final classification. Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art models. We further demonstrate the robustness of the encoder and the interpretability of prototypes with extensive experiments.
Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information of the sentences together with the recognized entity pairs, due to limited samples and lack of knowledge. To address this problem, in this paper, we proposed a novel entity CONCEPT-enhanced FEw-shot Relation Extraction scheme (ConceptFERE), which introduces the inherent concepts of entities to provide clues for relation prediction and boost the relations classification performance. Firstly, a concept-sentence attention module is developed to select the most appropriate concept from multiple concepts of each entity by calculating the semantic similarity between sentences and concepts. Secondly, a self-attention based fusion module is presented to bridge the gap of concept embedding and sentence embedding from different semantic spaces. Extensive experiments on the FSRE benchmark dataset FewRel have demonstrated the effectiveness and the superiority of the proposed ConceptFERE scheme as compared to the state-of-the-art baselines. Code is available at https://github.com/LittleGuoKe/ConceptFERE.
Document-level relation extraction aims to discover relations between entities across a whole document. How to build the dependency of entities from different sentences in a document remains to be a great challenge. Current approaches either leverage syntactic trees to construct document-level graphs or aggregate inference information from different sentences. In this paper, we build cross-sentence dependencies by inferring compositional relations between inter-sentence mentions. Adopting aggressive linking strategy, intermediate relations are reasoned on the document-level graphs by mention convolution. We further notice the generalization problem of NA instances, which is caused by incomplete annotation and worsened by fully-connected mention pairs. An improved ranking loss is proposed to attend this problem. Experiments show the connections between different mentions are crucial to document-level relation extraction, which enables the model to extract more meaningful higher-level compositional relations.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is semantic relations between entities. An effectiv e way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1) introduces some general concepts, and further 2) gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design sentence encoder and de-noise method. We further 3) cover some novel methods and recent trends as well as discuss possible future research directions for this task.
130 - Tapas Nayak 2021
Relation extraction from text is an important task for automatic knowledge base population. In this thesis, we first propose a syntax-focused multi-factor attention network model for finding the relation between two entities. Next, we propose two joi nt entity and relation extraction frameworks based on encoder-decoder architecture. Finally, we propose a hierarchical entity graph convolutional network for relation extraction across documents.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا