ترغب بنشر مسار تعليمي؟ اضغط هنا

Control and Simulation of a Grid-Forming Inverter for Hybrid PV-Battery Plants in Power System Black Start

108   0   0.0 ( 0 )
 نشر من قبل Quan Nguyen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Power system restoration is an important part of system planning. Power utilities are required to maintain black start capable generators that can energize the transmission system and provide cranking power to non-blackstart capable generators. Traditionally, hydro and diesel units are used as black start capable generators. With the increased penetration of bulk size solar farms, inverter based generation can play an important role in faster and parallel black start thus ensuring system can be brought back into service without the conventional delays that can be expected with limited black start generators. Inverter-based photovoltaic (PV) power plants have advantages that are suitable for black start. This paper proposes the modeling, control, and simulation of a grid-forming inverter-based PV-battery power plant that can be used as a black start unit. The inverter control includes both primary and secondary control loops to imitate the control of a conventional synchronous machine. The proposed approach is verified using a test system modified from the IEEE 9-bus system in the time-domain electromagnetic transient simulation tool PSCAD. The simulation results shows voltage and frequency stability during a multi-step black-start and network energization process.



قيم البحث

اقرأ أيضاً

The grid-forming converter is an important unit in the future power system with more inverter-interfaced generators. However, improving its performance is still a key challenge. This paper proposes a generalized architecture of the grid-forming conve rter from the view of multivariable feedback control. As a result, many of the existing popular control strategies, i.e., droop control, power synchronization control, virtual synchronous generator control, matching control, dispatchable virtual oscillator control, and their improved forms are unified into a multivariable feedback control transfer matrix working on several linear and nonlinear error signals. Meanwhile, unlike the traditional assumptions of decoupling between AC and DC control, active power and reactive power control, the proposed configuration simultaneously takes all of them into consideration, which therefore can provide better performance. As an example, a new multi-input-multi-output-based grid-forming (MIMO-GFM) control is proposed based on the generalized configuration. To cope with the multivariable feedback, an optimal and structured $H_{infty}$ synthesis is used to design the control parameters. At last, simulation and experimental results show superior performance and robustness of the proposed configuration and control.
Multilevel inverters are used to improve powerquality and reduce component stresses. This paper describesand compares two multilevel cascaded three phase inverterimplementations with two different modulation techniques: PhaseShifted Pulse Width Modul ation, and Nearest Level Control.Further analysis will show required number of inverter levelswith respect to modulation techniques to provide desired powerand power quality to resistive load or grid. Cascaded inverterwill be designed and simulated to draw power from PV cells.
Digital instrumentation and control (I&C) upgrades are a vital research area for nuclear industry. Despite their performance benefits, deployment of digital I&C in nuclear power plants (NPPs) has been limited. Digital I&C systems exhibit complex fail ure modes including common cause failures (CCFs) which can be difficult to identify. This paper describes the development of a redundancy-guided application of the Systems-Theoretic Process Analysis (STPA) and Fault Tree Analysis (FTA) for the hazard analysis of digital I&C in advanced NPPs. The resulting Redundancy-guided System-theoretic Hazard Analysis (RESHA) is applied for the case study of a representative state-of-the-art digital reactor trip system. The analysis qualitatively and systematically identifies the most critical CCFs and other hazards of digital I&C systems. Ultimately, RESHA can help researchers make informed decisions for how, and to what degree, defensive measures such as redundancy, diversity, and defense-in-depth can be used to mitigate or eliminate the potential hazards of digital I&C systems.
121 - Zhao Yuan 2020
We give the definition of s-Vector control by using the complex power vector in the p-q plane to quantify the feasible operational region of battery energy storage system (BESS) and to find the optimal power set-point solution. The s-Vector control f eatures in the avoidance of using costly optimization solvers to solve optimization models online which is also an execution time bottleneck in real-time control. The advantages of s-Vector control are fast and stable computational efficiency. We validate a s-Vector based real-time controller of BESS to provide frequency response and voltage support as ancillary services for the power grid. The objective is to maximize the utility of the BESS asset. We formulate the dynamic capability curve of the DC-AC converter and the security requirements of the battery cells as constrains of the control system. The initial power set-points are obtained based on the traditional droop control approach. Based on s-Vector control, a fast optimization solution algorithm is proposed to find the optimal power set-point and guarantee the security. According to the experimental validation in our 720 kVA / 560 kWh BESS on EPFL campus, we achieve 100 ms of refreshing the real-time control loop. As a benchmark, using optimization solver requires 200 ms to update the real-time control loop.
Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are base d on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا