ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse optics for glaciology

221   0   0.0 ( 0 )
 نشر من قبل Markus Allgaier
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical probing of glaciers has the potential for tremendous impact on environmental science. However, glacier ice is turbid, which prohibits the use of most established optical measurements for determining a glaciers interior structure. Here, we propose a method for determining the depth, scattering and absorption length based upon diffuse propagation of short optical pulses. Our model allows us to extract several characteristics of the glacier. Performing Monte Carlo simulations implementing Mie scattering and mixed boundary conditions, we show that the proposed approach should be feasible with current technology. The results suggest that optical properties and geometry of the glacier can be extracted from realistic measurements, which could be implemented with low cost and small footprint.

قيم البحث

اقرأ أيضاً

Multifocal plane microscopy (MUM) allows three dimensional objects to be imaged in a single camera frame. Our approach uses dual orthogonal diffraction phase gratings with a quadratic distortion of the lines to apply defocus to the first diffraction orders which, when paired with a relay lens, allows for 9 focal planes to be imaged on a single camera chip. This approach requires a strong signal level to ensure sufficient intensity in the diffracted light, but has the advantage of being compact and straightforward to implement. As the microscope begins to focus deeper into the sample, aberrations caused by refractive index mismatch and inhomogeneity in the samples media have an adverse effect on the signals quality. In this paper, we investigate the image quality improvement brought by applying adaptive optics (AO) to multifocal plane microscopy. A single correction device (an 8x8 deformable mirror (DM)) is combined with an image-based AO control strategy to perform the correction of optical aberrations. We compare full end-to-end modelling results using an established numerical modelling system adapted for microscopy to laboratory results both on a test sample and on a number of biological samples. Finally, we will demonstrate that combining AO and MUM, we are able to improve the image quality of biological samples and provide a good correction throughout the volume of the biological sample.
70 - Elie Gouzien 2020
We develop a universal approach enabling the study of any multimode quantum optical system evolving under a quadratic Hamiltonian. Our strategy generalizes the standard symplectic analysis and permits the treatment of multimode systems even in situat ions where traditional theoretical methods cannot be applied. This enables the description and investigation of a broad variety of key-resources for experimental quantum optics, ranging from optical parametric oscillators, to silicon-based micro-ring resonator, as well as opto-mechanical systems.
Diffraction calculations, such as the angular spectrum method, and Fresnel diffractions, are used for calculating scalar light propagation. The calculations are used in wide-ranging optics fields: for example, computer generated holograms (CGHs), dig ital holography, diffractive optical elements, microscopy, image encryption and decryption, three-dimensional analysis for optical devices and so on. However, increasing demands made by large-scale diffraction calculations have rendered the computational power of recent computers insufficient. We have already developed a numerical library for diffraction calculations using a graphic processing unit (GPU), which was named the GWO library. However, this GWO library is not user-friendly, since it is based on C language and was also run only on a GPU. In this paper, we develop a new C++ class library for diffraction and CGH calculations, which is referred as to a CWO++ library, running on a CPU and GPU. We also describe the structure, performance, and usage examples of the CWO++ library.
An axiparabola is a reflective aspherical optics that focuses a light beam into an extended focal line. The light intensity and group velocity profiles along the focus are adjustable through the proper design. The on-axis light velocity can be contro lled, for instance, by adding spatio-temporal couplings via chromatic optics on the incoming beam. Therefore the energy deposition along the axis can be either subluminal or superluminal as required in various applications. This article first explores how the axiparabola design defines its properties in the geometric optics approximation. Then the obtained description is considered in numerical simulations for two cases of interest for laser-plasma acceleration. We show that the axiparabola can be used either to generate a plasma waveguide to overcome diffraction or for driving a dephasingless wakefield accelerator.
Extended depth of focus (EDOF) optics can enable lower complexity optical imaging systems when compared to active focusing solutions. With existing EDOF optics, however, it is difficult to achieve high resolution and high collection efficiency simult aneously. The subwavelength pitch of meta-optics enables engineering very steep phase gradients, and thus meta-optics can achieve both a large physical aperture and high numerical aperture. Here, we demonstrate a fast (f/1.75) EDOF meta-optic operating at visible wavelengths, with an aperture of 2 mm and focal range from 3.5 mm to 14.5 mm (286 diopters to 69 diopters), which is a 250 elongation of the depth of focus relative to a standard lens. Depth-independent performance is shown by imaging at a range of finite conjugates, with a minimum spatial resolution of ~9.84{mu}m (50.8 cycles/mm). We also demonstrate operation of a directly integrated EDOF meta-optic camera module to evaluate imaging at multiple object distances, a functionality which would otherwise require a varifocal lens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا