ﻻ يوجد ملخص باللغة العربية
Extended depth of focus (EDOF) optics can enable lower complexity optical imaging systems when compared to active focusing solutions. With existing EDOF optics, however, it is difficult to achieve high resolution and high collection efficiency simultaneously. The subwavelength pitch of meta-optics enables engineering very steep phase gradients, and thus meta-optics can achieve both a large physical aperture and high numerical aperture. Here, we demonstrate a fast (f/1.75) EDOF meta-optic operating at visible wavelengths, with an aperture of 2 mm and focal range from 3.5 mm to 14.5 mm (286 diopters to 69 diopters), which is a 250 elongation of the depth of focus relative to a standard lens. Depth-independent performance is shown by imaging at a range of finite conjugates, with a minimum spatial resolution of ~9.84{mu}m (50.8 cycles/mm). We also demonstrate operation of a directly integrated EDOF meta-optic camera module to evaluate imaging at multiple object distances, a functionality which would otherwise require a varifocal lens.
Three-dimensional elements, with refractive index distribution structured at sub-wavelength scale, provide an expansive optical design space that can be harnessed for demonstrating multi-functional free-space optical devices. Here we present 3D diele
Optical metasurfaces have shown to be a powerful approach to planar optical elements, enabling an unprecedented control over light phase and amplitude. At that stage, where wide variety of static functionalities have been accomplished, most efforts a
Metasurface optics have demonstrated vast potential for implementing traditional optical components in an ultra-compact and lightweight form factor. Metasurface lenses, also called metalenses, however, suffer from severe chromatic aberrations, posing
Compact varifocal lenses are essential to various imaging and vision technologies. However, existing varifocal elements typically rely on mechanically-actuated systems with limited tuning speeds and scalability. Here, an ultrathin electrically contro
Modern-day computers use electrical signaling for processing and storing data which is bandwidth limited and power-hungry. These limitations are bypassed in the field of communications, where optical signaling is the norm. To exploit optical signalin