ﻻ يوجد ملخص باللغة العربية
This work introduces Bilinear Classes, a new structural framework, which permit generalization in reinforcement learning in a wide variety of settings through the use of function approximation. The framework incorporates nearly all existing models in which a polynomial sample complexity is achievable, and, notably, also includes new models, such as the Linear $Q^*/V^*$ model in which both the optimal $Q$-function and the optimal $V$-function are linear in some known feature space. Our main result provides an RL algorithm which has polynomial sample complexity for Bilinear Classes; notably, this sample complexity is stated in terms of a reduction to the generalization error of an underlying supervised learning sub-problem. These bounds nearly match the best known sample complexity bounds for existing models. Furthermore, this framework also extends to the infinite dimensional (RKHS) setting: for the the Linear $Q^*/V^*$ model, linear MDPs, and linear mixture MDPs, we provide sample complexities that have no explicit dependence on the explicit feature dimension (which could be infinite), but instead depends only on information theoretic quantities.
In order to meet the diverse challenges in solving many real-world problems, an intelligent agent has to be able to dynamically construct a model of its environment. Objects facilitate the modular reuse of prior knowledge and the combinatorial constr
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori. Due to the lack of further interactions with the environment, offline RL suffers from the insufficient coverage of the dataset,
Recent work has developed methods for learning deep network classifiers that are provably robust to norm-bounded adversarial perturbation; however, these methods are currently only possible for relatively small feedforward networks. In this paper, in
In this report, we present a new reinforcement learning (RL) benchmark based on the Sonic the Hedgehog (TM) video game franchise. This benchmark is intended to measure the performance of transfer learning and few-shot learning algorithms in the RL do
Generalization is a central challenge for the deployment of reinforcement learning (RL) systems in the real world. In this paper, we show that the sequential structure of the RL problem necessitates new approaches to generalization beyond the well-st