ترغب بنشر مسار تعليمي؟ اضغط هنا

A Consistent Reduced-Speed-of-Light Formulation of Cosmic Ray Transport Valid in Weak and Strong-Scattering Regimes

94   0   0.0 ( 0 )
 نشر من قبل Philip Hopkins
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philip F. Hopkins




اسأل ChatGPT حول البحث

We derive a consistent set of moments equations for CR-magnetohydrodynamics, assuming a gyrotropic distribution function (DF). Unlike previous efforts we derive a closure, akin to the M1 closure in radiation hydrodynamics (RHD), that is valid in both the nearly-isotropic-DF and/or strong-scattering regimes, and the arbitrarily-anisotropic DF or free-streaming regimes, as well as allowing for anisotropic scattering and transport/magnetic field structure. We present the appropriate two-moment closure and equations for various choices of evolved variables, including the CR phase space distribution function, number density, total energy, kinetic energy, and their fluxes or higher moments, and the appropriate coupling terms to the gas. We show that this naturally includes and generalizes a variety of terms including convection/fluid motion, anisotropic CR pressure, streaming, diffusion, gyro-resonant/streaming losses, and re-acceleration. We discuss how this extends previous treatments of CR transport including diffusion and moments methods and popular forms of the Fokker-Planck equation, as well as how this differs from the analogous M1-RHD equations. We also present two different methods for incorporating a reduced speed of light (RSOL) to reduce timestep limitations: in both we carefully address where the RSOL (versus true c) must appear for the correct behavior to be recovered in all interesting limits, and show how current implementations of CRs with a RSOL neglect some additional terms.

قيم البحث

اقرأ أيضاً

143 - Luigi Tibaldo IRAP 2021
Continuum gamma-ray emission produced by interactions of cosmic rays with interstellar matter and radiation fields is a probe of non-thermal particle populations in galaxies. After decades of continuous improvements in experimental techniques and an ever-increasing sky and energy coverage, gamma-ray observations reveal in unprecedented detail the properties of galactic cosmic rays. A variety of scales and environments are now accessible to us, from the local interstellar medium near the Sun and the vicinity of cosmic-ray accelerators, out to the Milky Way at large and beyond, with a growing number of gamma-ray emitting star-forming galaxies. Gamma-ray observations have been pushing forward our understanding of the life cycle of cosmic rays in galaxies and, combined with advances in related domains, they have been challenging standard assumptions in the field and have spurred new developments in modelling approaches and data analysis methods. We provide a review of the status of the subject and discuss perspectives on future progress.
In fluid dynamical simulations in astrophysics, large deformations are common and surface tracking is sometimes necessary. Smoothed Particle Hydrodynamics (SPH) method has been used in many of such simulations. Recently, however, it has been shown th at SPH cannot handle contact discontinuities or free surfaces accurately. There are several reasons for this problem. The first one is that SPH requires that the density is continuous and differentiable. The second one is that SPH does not have the consistency, and thus the accuracy is zeroth order in space. In addition, we cannot express accurate boundary conditions with SPH. In this paper, we propose a novel, high-order scheme for particle-based hydrodynamics of compress- ible fluid. Our method is based on kernel-weighted high-order fitting polynomial for intensive variables. With this approach, we can construct a scheme which solves all of the three prob- lems described above. For shock capturing, we use a tensor form of von-Neumann-Richtmyer artificial viscosity. We have applied our method to many test problems and obtained excel- lent result. Our method is not conservative, since particles do not have mass or energy, but only their densities. However, because of the Lagrangian nature of our scheme, the violation of the conservation laws turned out to be small. We name this method Consistent Particle Hydrodynamics in Strong Form (CPHSF).
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-ra ys for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), is presented that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
Star formation in galaxies appears to be self-regulated by energetic feedback processes. Among the most promising agents of feedback are cosmic rays (CRs), the relativistic ion population of interstellar and intergalactic plasmas. In these environmen ts, energetic CRs are virtually collisionless and interact via collective phenomena mediated by kinetic-scale plasma waves and large-scale magnetic fields. The enormous separation of kinetic and global astrophysical scales requires a hydrodynamic description. Here, we develop a new macroscopic theory for CR transport in the self-confinement picture, which includes CR diffusion and streaming. The interaction between CRs and electromagnetic fields of Alfvenic turbulence provides the main source of CR scattering, and causes CRs to stream along the magnetic field with the Alfven velocity if resonant waves are sufficiently energetic. However, numerical simulations struggle to capture this effect with current transport formalisms and adopt regularization schemes to ensure numerical stability. We extent the theory by deriving an equation for the CR momentum density along the mean magnetic field and include a transport equation for the Alfven-wave energy. We account for energy exchange of CRs and Alfven waves via the gyroresonant instability and include other wave damping mechanisms. Using numerical simulations we demonstrate that our new theory enables stable, self-regulated CR transport. The theory is coupled to magneto-hydrodynamics, conserves the total energy and momentum, and correctly recovers previous macroscopic CR transport formalisms in the steady-state flux limit. Because it is free of tunable parameters, it holds the promise to provide predictable simulations of CR feedback in galaxy formation.
Cosmic ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we post-process a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple purely diffusive formalism with constant scattering coefficient, to a physically-motivated model in which the scattering coefficient is set by critical balance between streaming-driven Alfven wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of $sim 1$ GeV (high-energy) and $sim 30$~MeV (low-energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density, hot phase, while diffusion and streaming are more important in higher density, cooler phases. Our physically-motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density $n_mathrm{H} sim 0.01, mathrm{cm}^{-3}$. Ion-neutral damping of Alfven waves results in strong diffusion and nearly uniform cosmic ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا