ﻻ يوجد ملخص باللغة العربية
Despite theoretical predictions for a Cherenkov-type radiation of spin waves (magnons) by various propagating magnetic perturbations, fast-enough moving magnetic field stimuli have not been available so far. Here, we experimentally realize the Cherenkov radiation of spin waves in a Co-Fe magnonic conduit by fast-moving (>1 km/s) magnetic flux quanta (Abrikosov vortices) in an adjacent Nb-C superconducting strip. The radiation is evidenced by the microwave detection of spin waves propagating a distance of 2 micrometers from the superconductor and it is accompanied by a magnon Shapiro step in its current-voltage curve. The spin-wave excitation is unidirectional and monochromatic, with sub-40 nm wavelengths determined by the period of the vortex lattice. The phase-locking of the vortex lattice with the excited spin wave limits the vortex velocity and reduces the dissipation in the superconductor.
Using heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O7-{delta}), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effect
Almost any use of a superconductor implies a nonequilibrium state. Remarkably, the non-equilibrium states induced by a microwave stimulus and the dynamics of magnetic flux quanta (Abrikosov vortices) can give rise to strikingly contrary effects: A su
The textit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustration point. However, the suppressed charge matrix elements and low transiti
The dynamics of Abrikosov vortices in superconductors is usually limited to vortex velocities $vsimeq1$ km/s above which samples abruptly transit into the normal state. In the Larkin-Ovchinnikov framework, near the critical temperature this is becaus
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement s