ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarity Transfer for Knowledge Distillation

97   0   0.0 ( 0 )
 نشر من قبل Haoran Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge distillation is a popular paradigm for learning portable neural networks by transferring the knowledge from a large model into a smaller one. Most existing approaches enhance the student model by utilizing the similarity information between the categories of instance level provided by the teacher model. However, these works ignore the similarity correlation between different instances that plays an important role in confidence prediction. To tackle this issue, we propose a novel method in this paper, called similarity transfer for knowledge distillation (STKD), which aims to fully utilize the similarities between categories of multiple samples. Furthermore, we propose to better capture the similarity correlation between different instances by the mixup technique, which creates virtual samples by a weighted linear interpolation. Note that, our distillation loss can fully utilize the incorrect classes similarities by the mixed labels. The proposed approach promotes the performance of student model as the virtual sample created by multiple images produces a similar probability distribution in the teacher and student networks. Experiments and ablation studies on several public classification datasets including CIFAR-10,CIFAR-100,CINIC-10 and Tiny-ImageNet verify that this light-weight method can effectively boost the performance of the compact student model. It shows that STKD substantially has outperformed the vanilla knowledge distillation and has achieved superior accuracy over the state-of-the-art knowledge distillation methods.



قيم البحث

اقرأ أيضاً

Knowledge distillation is a widely applicable technique for training a student neural network under the guidance of a trained teacher network. For example, in neural network compression, a high-capacity teacher is distilled to train a compact student ; in privileged learning, a teacher trained with privileged data is distilled to train a student without access to that data. The distillation loss determines how a teachers knowledge is captured and transferred to the student. In this paper, we propose a new form of knowledge distillation loss that is inspired by the observation that semantically similar inputs tend to elicit similar activation patterns in a trained network. Similarity-preserving knowledge distillation guides the training of a student network such that input pairs that produce similar (dissimilar) activations in the teacher network produce similar (dissimilar) activations in the student network. In contrast to previous distillation methods, the student is not required to mimic the representation space of the teacher, but rather to preserve the pairwise similarities in its own representation space. Experiments on three public datasets demonstrate the potential of our approach.
Knowledge Distillation (KD) is a popular area of research for reducing the size of large models while still maintaining good performance. The outputs of larger teacher models are used to guide the training of smaller student models. Given the repetit ive nature of acoustic events, we propose to leverage this information to regulate the KD training for Audio Tagging. This novel KD method, Intra-Utterance Similarity Preserving KD (IUSP), shows promising results for the audio tagging task. It is motivated by the previously published KD method: Similarity Preserving KD (SP). However, instead of preserving the pairwise similarities between inputs within a mini-batch, our method preserves the pairwise similarities between the frames of a single input utterance. Our proposed KD method, IUSP, shows consistent improvements over SP across student models of different sizes on the DCASE 2019 Task 5 dataset for audio tagging. There is a 27.1% to 122.4% percent increase in improvement of micro AUPRC over the baseline relative to SPs improvement of over the baseline.
Most teacher-student frameworks based on knowledge distillation (KD) depend on a strong congruent constraint on instance level. However, they usually ignore the correlation between multiple instances, which is also valuable for knowledge transfer. In this work, we propose a new framework named correlation congruence for knowledge distillation (CCKD), which transfers not only the instance-level information, but also the correlation between instances. Furthermore, a generalized kernel method based on Taylor series expansion is proposed to better capture the correlation between instances. Empirical experiments and ablation studies on image classification tasks (including CIFAR-100, ImageNet-1K) and metric learning tasks (including ReID and Face Recognition) show that the proposed CCKD substantially outperforms the original KD and achieves state-of-the-art accuracy compared with other SOTA KD-based methods. The CCKD can be easily deployed in the majority of the teacher-student framework such as KD and hint-based learning methods.
The balance between high accuracy and high speed has always been a challenging task in semantic image segmentation. Compact segmentation networks are more widely used in the case of limited resources, while their performances are constrained. In this paper, motivated by the residual learning and global aggregation, we propose a simple yet general and effective knowledge distillation framework called double similarity distillation (DSD) to improve the classification accuracy of all existing compact networks by capturing the similarity knowledge in pixel and category dimensions, respectively. Specifically, we propose a pixel-wise similarity distillation (PSD) module that utilizes residual attention maps to capture more detailed spatial dependencies across multiple layers. Compared with exiting methods, the PSD module greatly reduces the amount of calculation and is easy to expand. Furthermore, considering the differences in characteristics between semantic segmentation task and other computer vision tasks, we propose a category-wise similarity distillation (CSD) module, which can help the compact segmentation network strengthen the global category correlation by constructing the correlation matrix. Combining these two modules, DSD framework has no extra parameters and only a minimal increase in FLOPs. Extensive experiments on four challenging datasets, including Cityscapes, CamVid, ADE20K, and Pascal VOC 2012, show that DSD outperforms current state-of-the-art methods, proving its effectiveness and generality. The code and models will be publicly available.
Recent applications pose requirements of both cross-domain knowledge transfer and model compression to machine learning models due to insufficient training data and limited computational resources. In this paper, we propose a new knowledge distillati on model, named Spirit Distillation (SD), which is a model compression method with multi-domain knowledge transfer. The compact student network mimics out a representation equivalent to the front part of the teacher network, through which the general knowledge can be transferred from the source domain (teacher) to the target domain (student). To further improve the robustness of the student, we extend SD to Enhanced Spirit Distillation (ESD) in exploiting a more comprehensive knowledge by introducing the proximity domain which is similar to the target domain for feature extraction. Results demonstrate that our method can boost mIOU and high-precision accuracy by 1.4% and 8.2% respectively with 78.2% segmentation variance, and can gain a precise compact network with only 41.8% FLOPs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا