ترغب بنشر مسار تعليمي؟ اضغط هنا

Disks and winds around hot stars: new insights from multi-wavelength spectroscopy and interferometry

35   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hot stars are the main source of ionization of the interstellar medium and its enrichment due to heavy elements. Constraining the physical conditions of their environments is crucial to understand how these stars evolve and their impact on the evolution of galaxies. The objective of my thesis was to investigate the physical properties of the photosphere and circumstellar environment of massive hot stars confronting multi-band spectroscopic or spectro-interferometric observations and sophisticated non-LTE radiative transfer codes. My work was focused on two main lines of research. The first concerns radiative line-driven winds. Using UV and visible spectroscopic data and the radiative transfer code CMFGEN, I investigated the weak wind phenomenon on a sample of nine Galactic O stars. This study shows for the first time that the weak wind phenomenon, originally found for O dwarfs, also exists on more evolved O stars and that future studies must evaluate its impact on the evolution of massive stars. My other line of research concerns the study of classical Be stars, the fastest rotators among the non-degenerated stars, and which are surrounded by rotating equatorial disks. I studied the Be star $omicron$ Aquarii using H$alpha$ (CHARA/VEGA) and Br$gamma$ (VLTI/AMBER) spectro-interferometric observations, the radiative transfer code HDUST, and developing new automatic procedures to better constrain the kinematics of the disk. This multi-band study allowed to draw the most detailed picture of this object and its environment, to test the limits of the current generation of radiative transfer models, and paved the way to my future work on a large samples of Be stars observed with VEGA, AMBER, and the newly available VLTI mid-infrared combiner MATISSE.

قيم البحث

اقرأ أيضاً

439 - C. Tapia , S. Lizano 2017
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and collaborators. We consider disks around low mass protostars, T Tauri stars, and FU Ori stars with different mass-to-flux ratios $lambda_{rm sys}$. We calculate the spectral energy distribution and the antenna temperature profiles at 1 mm and 7 mm convolved with the ALMA and VLA beams. We find that disks with weaker magnetization (high values of $lambda_{rm sys}$) emit more than disks with stronger magnetization (low values of $lambda_{rm sys}$). This happens because the former are denser, hotter and have larger aspect ratios, receiving more irradiation from the central star. The level of magnetization also affects the optical depth at millimeter wavelengths, being larger for disks with high $lambda_{rm sys}$. In general, disks around low mass protostars and T Tauri stars are optically thin at 7 mm while disks around FU Ori are optically thick. A qualitative comparison of the emission of these magnetized disks, including heating by an external envelope, with the observed millimeter antenna temperature profiles of HL Tau indicates that large cm grains are required to increase the optical depth and reproduce the observed 7 mm emission at large radii.
The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Recent observations suggest that many flarin g disks have gaps, whereas flat disks are thought to be gapless. The different groups of objects can be expected to have different structural signatures in high-angular-resolution data. Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We model the large set of observations with simple geometric models. A population of radiative-transfer models is synthesized for interpreting the mid-infrared signatures. Objects with similar luminosities show very different disk sizes in the mid-infrared. Restricting to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional. We find that several group II objects have mid-infrared sizes and colors overlapping with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Flat disks with gaps are most likely descendants of flat disks without gaps. Gaps, potentially related to the formation of massive bodies, may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks, or some of them may further evolve into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk.
With increasingly accurate data on RR Lyrae stars we find that the Blazhko effect may be a rule rather than an exception. However, we still do not know what is the cause of this mysterious amplitude and phase modulation. In my talk, I intended to giv e a glimpse of the properties of Blazhko stars, presenting recent findings concerning what makes Blazhko stars different from their non-modulated counterparts. Recent observations of Blazhko stars obtained from space give some important clues that deserve further exploration.
The presence of debris disks around young main sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The FEPS (Formation and Evol ution of Planetary Systems) $Spitzer$ Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at ~2 resolution that spatially resolve the debris disks around these nearby ($dsim$50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array (ALMA) data to enable a uniform analysis of the full five-object sample. We simultaneously model the broad-band photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform an MCMC analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-
Extreme ultraviolet (EUV, 13.6 eV $< h u lta 100$ eV) and X-rays in the 0.1-2 keV band can heat the surfaces of disks around young, low mass stars to thousands of degrees and ionize species with ionization potentials greater than 13.6 eV. Shocks gene rated by protostellar winds can also heat and ionize the same species close to the star/disk system. These processes produce diagnostic lines (e.g., [NeII] 12.8 $mu$m and [OI] 6300 AA) that we model as functions of key parameters such as EUV luminosity and spectral shape, X-ray luminosity and spectral shape, and wind mass loss rate and shock speed. Comparing our models with observations, we conclude that either internal shocks in the winds or X-rays incident on the disk surfaces often produce the observed [NeII] line, although there are cases where EUV may dominate. Shocks created by the oblique interaction of winds with disks are unlikely [NeII] sources because these shocks are too weak to ionize Ne. Even if [NeII] is mainly produced by X-rays or internal wind shocks, the neon observations typically place upper limits of $lta 10^{42}$ s$^{-1}$ on the EUV photon luminosity of these young low mass stars. The observed [OI] 6300 AA line has both a low velocity component (LVC) and a high velocity component. The latter likely arises in internal wind shocks. For the former we find that X-rays likely produce more [OI] luminosity than either the EUV layer, the transition layer between the EUV and X-ray layer, or the shear layer where the protostellar wind shocks and entrains disk material in a radial flow across the surface of the disk. Our soft X-ray models produce [OI] LVCs with luminosities up to $10^{-4}$ L$_odot$, but may not be able to explain the most luminous LVCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا