ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnostic Line Emission from EUV and X-ray Illuminated Disks and Shocks around Low Mass stars

60   0   0.0 ( 0 )
 نشر من قبل Uma Gorti
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme ultraviolet (EUV, 13.6 eV $< h u lta 100$ eV) and X-rays in the 0.1-2 keV band can heat the surfaces of disks around young, low mass stars to thousands of degrees and ionize species with ionization potentials greater than 13.6 eV. Shocks generated by protostellar winds can also heat and ionize the same species close to the star/disk system. These processes produce diagnostic lines (e.g., [NeII] 12.8 $mu$m and [OI] 6300 AA) that we model as functions of key parameters such as EUV luminosity and spectral shape, X-ray luminosity and spectral shape, and wind mass loss rate and shock speed. Comparing our models with observations, we conclude that either internal shocks in the winds or X-rays incident on the disk surfaces often produce the observed [NeII] line, although there are cases where EUV may dominate. Shocks created by the oblique interaction of winds with disks are unlikely [NeII] sources because these shocks are too weak to ionize Ne. Even if [NeII] is mainly produced by X-rays or internal wind shocks, the neon observations typically place upper limits of $lta 10^{42}$ s$^{-1}$ on the EUV photon luminosity of these young low mass stars. The observed [OI] 6300 AA line has both a low velocity component (LVC) and a high velocity component. The latter likely arises in internal wind shocks. For the former we find that X-rays likely produce more [OI] luminosity than either the EUV layer, the transition layer between the EUV and X-ray layer, or the shear layer where the protostellar wind shocks and entrains disk material in a radial flow across the surface of the disk. Our soft X-ray models produce [OI] LVCs with luminosities up to $10^{-4}$ L$_odot$, but may not be able to explain the most luminous LVCs.

قيم البحث

اقرأ أيضاً

Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the central star (from optical to X-ray wavelengths) and viscous accretion are the main source of energy and dominates the disk physics and chemistry in its early stages. This is the environment in which the first phases of planet formation will proceed. We investigate how stellar and disk parameters impact the fine-structure cooling lines [NeII], [ArII], [OI], [CII] and H2O rotational lines in the disk. These lines are potentially powerful diagnostics of the disk structure and their modelling permits a thorough interpretation of the observations carried out with instrumental facilities such as Spitzer and Herschel. Following Aresu et al. (2011), we computed a grid of 240 disk models, in which the X-ray luminosity, UV-excess luminosity, minimum dust grain size, dust size distribution power law and surface density distribution power law, are systematically varied. We solve self-consistently for the disk vertical hydrostatic structure in every model and apply detailed line radiative transfer to calculate line fluxes and profiles for a series of well known mid- and far-infrared cooling lines. The [OI] 63 micron line flux increases with increasing FUV luminosity when Lx < 1e30 erg/s, and with increasing X-ray luminosity when LX > 1e30 erg/s. [CII] 157 micron is mainly driven by FUV luminosity via C+ production, X-rays affect the line flux to a lesser extent. [NeII] 12.8 micron correlates with X-rays; the line profile emitted from the disk atmosphere shows a double-peaked component, caused by emission in the static disk atmosphere, next to a high velocity double-peaked component, caused by emission in the very inner rim. (abridged)
439 - C. Tapia , S. Lizano 2017
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and collaborators. We consider disks around low mass protostars, T Tauri stars, and FU Ori stars with different mass-to-flux ratios $lambda_{rm sys}$. We calculate the spectral energy distribution and the antenna temperature profiles at 1 mm and 7 mm convolved with the ALMA and VLA beams. We find that disks with weaker magnetization (high values of $lambda_{rm sys}$) emit more than disks with stronger magnetization (low values of $lambda_{rm sys}$). This happens because the former are denser, hotter and have larger aspect ratios, receiving more irradiation from the central star. The level of magnetization also affects the optical depth at millimeter wavelengths, being larger for disks with high $lambda_{rm sys}$. In general, disks around low mass protostars and T Tauri stars are optically thin at 7 mm while disks around FU Ori are optically thick. A qualitative comparison of the emission of these magnetized disks, including heating by an external envelope, with the observed millimeter antenna temperature profiles of HL Tau indicates that large cm grains are required to increase the optical depth and reproduce the observed 7 mm emission at large radii.
82 - E. Sanchis , L. Testi , A. Natta 2019
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 $M_{bigoplus}$; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of $dot{M}_{mathrm{acc}} / M_{mathrm{disk}}$ significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs. We surveyed 50 fields containing 51 known or suspected brown dwa rfs and very low mass stars that have evidence of circumstellar disks based on Spitzer photometry and/or spectroscopy. The objects with known spectral types range from M3 to M9.5. Four of the candidates were subsequently identified as extragalactic objects. Of the remaining 47 we have successfully detected 36 at 70micron and 14 at 160micron with S/N greater than 3, as well as several additional possible detections with low S/N. The objects exhibit a range of [24]--[70] micron colors suggesting a range in mass and/or structure of the outer disk. We present modeling of the spectral energy distributions of the sample and discuss trends visible in the data. Using two Monte Carlo radiative transfer codes we investigate disk masses and geometry. We find a very wide range in modeled total disk masses from less than 1e-6 solar masses up to 1e-3 solar masses with a median disk mass of order 3e-5 solar masses, suggesting that the median ratio of disk mass to central object mass may be lower than for T Tauri stars. The disk scale heights and flaring angles, however, cover a range consistent with those seen around T Tauri stars. The host clouds in which the young brown dwarfs and low-mass stars are located span a range in estimated age from ~1-3 Myr to ~10 Myr and represent a variety of star-forming environments. No obvious dependence on cloud location or age is seen in the disk properties, though the statistical significance of this conclusion is not strong.
123 - G. Aresu , I. Kamp , R. Meijerink 2010
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers of their surrounding protoplanetary disks. Aim: The effects and importance of X-rays on the chemical and hydrostatic structure of protoplanetary disks are investigated, species tracing X-ray irradiation (for L_X >= 10^29 erg/s) are identified and predictions for [OI], [CII] and [NII] fine structure line fluxes are provided. Methods: We have implemented X-ray physics and chemistry into the chemo-physical disk code ProDiMo. We include Coulomb heating and H2 ionization as heating processes and primary and secondary ionization due to X-rays in the chemistry. Results: X-rays heat up the gas causing it to expand in the optically thin surface layers. Neutral molecular species are not much affected in their abundance and spatial distribution, but charged species such as N+, OH+, H2O+ and H3O+ show enhanced abundances in the disk surface. Conclusions: Coulomb heating by X-rays changes the vertical structure of the disk, yielding temperatures of ~ 8000 K out to distances of 50 AU. The chemical structure is altered by the high electron abundance in the gas in the disk surface, causing an efficient ion-molecule chemistry. The products of this, OH+, H2O+ and H3O+, are of great interest for observations of low-mass young stellar objects with the Herschel Space Observatory. [OI] (at 63 and 145 mic) and [CII] (at 158 mic) fine structure emission are only affected for L_X > 10^30 erg/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا