ﻻ يوجد ملخص باللغة العربية
The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona. The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to get the 3D structure of the coronal magnetic field is by performing magnetic field extrapolations from the photosphere to the corona. In previous work, it was shown that by prescribing the 3D reconstructed loops geometry, the magnetic field extrapolation finds a solution with a better agreement between the modeled field and the reconstructed loops. Also, it improves the quality of the field extrapolation. Stereoscopy represents the classical method for performing 3D coronal loop reconstruction. It uses at least two view directions. When only one vantage point of the coronal loops is available, other 3D reconstruction methods must be applied. Within this work, we present a method for the 3D loop reconstruction based on machine learning. Our purpose for developing this method is to use as many observed coronal loops in space and time for the modeling of the coronal magnetic field. Our results show that we can build machine learning models that can retrieve 3D loops based only on their projection information. In the end, the neural network model will be able to use only 2D information of the coronal loops, identified, traced and extracted from the EUV images, for the calculation of their 3D geometry.
A sample of Nobeyama flares was selected and analyzed using loop model for important flare parameters. The model for the flaring region consists of a three dimensional dipolar magnetic field, and spatial distributions of non-thermal electrons. We con
Context. The details of the spectral profiles of extreme UV emission lines from solar active regions contain key information to investigate the structure, dynamics, and energetics of the solar upper atmosphere. Aims. We characterize the line profiles
The perplexing mystery of what maintains the solar coronal temperature at about a million K, while the visible disc of the Sun is only at 5800 K, has been a long standing problem in solar physics. A recent study by Mondal(2020) has provided the first
Three dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington Rotations (CR 2054$-$2153) during 2007/03$-$2014/08 using the spherically symmetric method from polarized white-light observations with the STER
We present a statistical analysis of 43 coronal dimming events, associated with Earth-directed CMEs that occurred during the period of quasi-quadrature of the SDO and STEREO satellites. We studied coronal dimmings that were observed above the limb by