ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar Burst Analysis with 3D Loop Models

153   0   0.0 ( 0 )
 نشر من قبل Paulo Sim\\~oes
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A sample of Nobeyama flares was selected and analyzed using loop model for important flare parameters. The model for the flaring region consists of a three dimensional dipolar magnetic field, and spatial distributions of non-thermal electrons. We constructed a database by calculating the flare microwave emission for a wide range of these parameters. Out of this database with more than 5,000 cases we extracted general flare properties by comparing the observed and calculated microwave spectra. The analysis of NoRP data was mostly based in the center-to-limb variation of the flare properties with looptop and footpoint electron distributions and for NoRH maps on the resultant distribution of emission. One important aspect of this work is the comparison of the analysis of a flare using an inhomogeneous source model and a simplistic homogeneous source model. Our results show clearly that the homogeneous source hypothesis is not appropriate to describe the possible flare geometry and its use can easily produce misleading results in terms of non-thermal electron density and magnetic field strength. A center darkening of flares was also obtained as a geometrical property of the loop-like sources.



قيم البحث

اقرأ أيضاً

The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona. The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to get the 3D structure of the co ronal magnetic field is by performing magnetic field extrapolations from the photosphere to the corona. In previous work, it was shown that by prescribing the 3D reconstructed loops geometry, the magnetic field extrapolation finds a solution with a better agreement between the modeled field and the reconstructed loops. Also, it improves the quality of the field extrapolation. Stereoscopy represents the classical method for performing 3D coronal loop reconstruction. It uses at least two view directions. When only one vantage point of the coronal loops is available, other 3D reconstruction methods must be applied. Within this work, we present a method for the 3D loop reconstruction based on machine learning. Our purpose for developing this method is to use as many observed coronal loops in space and time for the modeling of the coronal magnetic field. Our results show that we can build machine learning models that can retrieve 3D loops based only on their projection information. In the end, the neural network model will be able to use only 2D information of the coronal loops, identified, traced and extracted from the EUV images, for the calculation of their 3D geometry.
Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with CMEs and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20-90 MHz) is now possible with LOFAR, opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon.
We study extreme-ultraviolet emission line spectra derived from three-dimensional magnetohydrodynamic models of structures in the corona. In order to investigate the effects of increased magnetic activity at photospheric levels in a numerical experim ent, a much higher magnetic flux density is applied at photospheric levels as compared to the Sun. Thus, we can expect our results to highlight the differences between the Sun and more active, but still solar-like stars. We discuss signatures seen in extreme-ultraviolet emission lines synthesized from these models and compare them to signatures found in the spatial distribution and temporal evolution of Doppler shifts in lines formed in the transition region and corona. This is of major interest to test the quality of the underlying magnetohydrodynamic model to heat the corona, i.e. currents in the corona driven by photospheric motions (flux braiding).
CONTEXT: In recent years, the solar chemical abundances have been studied in considerable detail because of discrepant values of solar metallicity inferred from different indicators, i.e., on the one hand, the sub-solar photospheric abundances result ing from spectroscopic chemical composition analyses with the aid of 3D hydrodynamical models of the solar atmosphere, and, on the other hand, the high metallicity inferred by helioseismology. AIMS: After investigating the solar oxygen abundance using a CO5BOLD 3D hydrodynamical solar model in previous work, we undertake a similar approach studying the solar abundance of nitrogen, since this element accounts for a significant fraction of the overall solar metallicity, Z. METHOD: We used a selection of atomic spectral lines to determine the solar nitrogen abundance, relying mainly on equivalent width measurements in the literature. We investigate the influence on the abundance analysis, of both deviations from local thermodynamic equilibrium (NLTE effects) and photospheric inhomogeneities (granulation effects). RESULTS: We recommend use of a solar nitrogen abundance of A(N)=7.86+-0.12 whose error bar reflects the line-to-line scatter. CONCLUSION: The solar metallicity implied by the CO5BOLD-based nitrogen and oxygen abundances is in the range 0.0145<= Z <= 0.0167. This result is a step towards reconciling photospheric abundances with helioseismic constraints on Z. Our most suitable estimates are Z=0.0156 and Z/X=0.0213.
At the beginning of the 4 November 2015 flare, in the 1300 -- 2000 MHz frequency range, we observed a very rare slowly positively drifting burst. We searched for associated phenomena in simultaneous EUV observations made by IRIS, SDO/AIA, Hinode/XRT and in H alpha observations. We found that this radio burst was accompanied with the bright blob, visible at transition region, coronal, and flare temperatures, falling down to the chromosphere along the dark loop with the velocity of about 280 km/s. The dark loop was visible in H alpha but disappeared afterwards. Furthermore, we found that the falling blob interacted with the chromosphere as expressed by a sudden change of the H alpha spectra at the location of this interaction. Considering different possibilities we propose that the observed slowly positively drifting burst is generated by the thermal conduction front formed in front of the falling hot EUV blob.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا